Nonlocal model of neoclassical economic growth Solow
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2012), pp. 37-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In generalization of the Solow model, when the change in resources in the production function described derivatives of fractional order in the sense of the Gerasimov–Caputo. As a result, we come to an important economic value - capital-labor ratio, which is characterized in stpennymi functions of Mittag–Leffler.
Keywords: Solow model, the operator Gerasimov–Caputo, function of the type Mittag–Leffler.
@article{VKAM_2012_2_a4,
     author = {V. V. Samuta and V. A. Strelova and R. I. Parovik},
     title = {Nonlocal model of neoclassical economic growth {Solow}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {37--41},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2012_2_a4/}
}
TY  - JOUR
AU  - V. V. Samuta
AU  - V. A. Strelova
AU  - R. I. Parovik
TI  - Nonlocal model of neoclassical economic growth Solow
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2012
SP  - 37
EP  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2012_2_a4/
LA  - ru
ID  - VKAM_2012_2_a4
ER  - 
%0 Journal Article
%A V. V. Samuta
%A V. A. Strelova
%A R. I. Parovik
%T Nonlocal model of neoclassical economic growth Solow
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2012
%P 37-41
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2012_2_a4/
%G ru
%F VKAM_2012_2_a4
V. V. Samuta; V. A. Strelova; R. I. Parovik. Nonlocal model of neoclassical economic growth Solow. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2012), pp. 37-41. http://geodesic.mathdoc.fr/item/VKAM_2012_2_a4/

[1] Volgina O. A., Golodnaya N. Yu., Odiyako N. N., Shuman G. I., Matematicheskoe modelirovanie ekonomicheskikh protsessov i sistem, Knorus, M., 2011, 200 pp.

[2] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012, 232 pp.

[3] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[4] Terekhov L. L., Proizvodstvennye funktsii, Statistika, M., 1974, 113 pp.

[5] Nakhusheva Z. A., “Ob odnoi odnosektornoi makroekonomicheskoi modeli dolgosrochnogo prognozirovaniya”, Doklady AMAN, 14:1 (2012), 124–127

[6] Parovik R. I., “Reshenie nelokalnogo uravneniya anomalnoi diffuzii-advektsii radona v sisteme grunt-atmosfera”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 1(2), 37–44

[7] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[8] Polyanin A. A., Manzhirov A. V., Spravochnik po integralnym uravneniyam, Fizmatlit, M., 2003, 608 pp.