Symmetry groups for Painleve equations
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2012), pp. 7-17

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study, one-parametric symmetry groups were found for 50 canonical equations with Painleve property, and, in special cases, general solutions were obtained. The result can be used as reference for specialists in the theory of nonlinear differential equations.
Keywords: differential equation, singularities, Painleve property, symmetry groups.
@article{VKAM_2012_2_a0,
     author = {D. S. Noshchenko and I. A. Ilyin},
     title = {Symmetry groups for {Painleve} equations},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {7--17},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2012_2_a0/}
}
TY  - JOUR
AU  - D. S. Noshchenko
AU  - I. A. Ilyin
TI  - Symmetry groups for Painleve equations
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2012
SP  - 7
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2012_2_a0/
LA  - ru
ID  - VKAM_2012_2_a0
ER  - 
%0 Journal Article
%A D. S. Noshchenko
%A I. A. Ilyin
%T Symmetry groups for Painleve equations
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2012
%P 7-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2012_2_a0/
%G ru
%F VKAM_2012_2_a0
D. S. Noshchenko; I. A. Ilyin. Symmetry groups for Painleve equations. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2012), pp. 7-17. http://geodesic.mathdoc.fr/item/VKAM_2012_2_a0/