Symmetry groups for Painleve equations
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2012), pp. 7-17
Cet article a éte moissonné depuis la source Math-Net.Ru
In this study, one-parametric symmetry groups were found for 50 canonical equations with Painleve property, and, in special cases, general solutions were obtained. The result can be used as reference for specialists in the theory of nonlinear differential equations.
Keywords:
differential equation, singularities, Painleve property, symmetry groups.
@article{VKAM_2012_2_a0,
author = {D. S. Noshchenko and I. A. Ilyin},
title = {Symmetry groups for {Painleve} equations},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {7--17},
year = {2012},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2012_2_a0/}
}
D. S. Noshchenko; I. A. Ilyin. Symmetry groups for Painleve equations. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2012), pp. 7-17. http://geodesic.mathdoc.fr/item/VKAM_2012_2_a0/
[1] Ains E., Obyknovennye diferentsialnye uravneniya, DNTVU, Kharkov, 1939
[2] Golubev V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M., 1950
[3] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989
[4] Slavyanov S., Lai V., Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002
[5] Gouveia P., Torres D., “Computing ODE symmetries as abnormal variational symmetries”, Nonlinear Analysis, 2008 | MR