Keywords: parametric resonance, chart Strutt-Ince.
@article{VKAM_2012_1_a3,
author = {R. I. Parovik},
title = {Charts {Strutt-Ince} for generalized {Mathieu} equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {24--30},
year = {2012},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2012_1_a3/}
}
R. I. Parovik. Charts Strutt-Ince for generalized Mathieu equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2012), pp. 24-30. http://geodesic.mathdoc.fr/item/VKAM_2012_1_a3/
[1] V. E. Tarasov, Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii in-t kompyuternykh issledovanii, M. – Izhevsk, 2011, 568 pp.
[2] R. I. Parovik, “Obobschennoe uravnenie Mate”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 2(3), 12–17
[3] R. H. Rand, S. M. Sah, M. K. Suchrsky, “Fractional Mathieu equation”, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3254–3262 | DOI | MR
[4] V. A. Nakhusheva, Differentsialnye uravneniya matematicheskikh modelei nelokalnykh protsessov, Nauka, M., 2006, 173 pp. | MR
[5] S. C. Sinha, C. C. Chou, H. H. Denman, “Stability analysis of systems with periodic coefficients: an approximate approach”, Journal of Sound and Vibration, 64:4 (1979), 515–527 | DOI | Zbl
[6] V. V. Afanasev, M. P. Danilaev, Yu. E. Polskii, “Stabilizatsiya fraktalnogo ostsillyatora inertsialnymi vozdeistviyami”, Pisma v ZhTF, 36:7 (2010), 1–6 | MR