Charts Strutt-Ince for generalized Mathieu equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2012), pp. 24-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We have investigated the solution of the generalized Mathieu equation. With the aid of diagrams Strutt-Ince built the instability region, the condition can occur when the parametric resonance
Mots-clés : fractal dimension
Keywords: parametric resonance, chart Strutt-Ince.
@article{VKAM_2012_1_a3,
     author = {R. I. Parovik},
     title = {Charts {Strutt-Ince} for generalized {Mathieu} equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {24--30},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2012_1_a3/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Charts Strutt-Ince for generalized Mathieu equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2012
SP  - 24
EP  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2012_1_a3/
LA  - ru
ID  - VKAM_2012_1_a3
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Charts Strutt-Ince for generalized Mathieu equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2012
%P 24-30
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2012_1_a3/
%G ru
%F VKAM_2012_1_a3
R. I. Parovik. Charts Strutt-Ince for generalized Mathieu equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2012), pp. 24-30. http://geodesic.mathdoc.fr/item/VKAM_2012_1_a3/

[1] V. E. Tarasov, Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii in-t kompyuternykh issledovanii, M. – Izhevsk, 2011, 568 pp.

[2] R. I. Parovik, “Obobschennoe uravnenie Mate”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 2(3), 12–17

[3] R. H. Rand, S. M. Sah, M. K. Suchrsky, “Fractional Mathieu equation”, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3254–3262 | DOI | MR

[4] V. A. Nakhusheva, Differentsialnye uravneniya matematicheskikh modelei nelokalnykh protsessov, Nauka, M., 2006, 173 pp. | MR

[5] S. C. Sinha, C. C. Chou, H. H. Denman, “Stability analysis of systems with periodic coefficients: an approximate approach”, Journal of Sound and Vibration, 64:4 (1979), 515–527 | DOI | Zbl

[6] V. V. Afanasev, M. P. Danilaev, Yu. E. Polskii, “Stabilizatsiya fraktalnogo ostsillyatora inertsialnymi vozdeistviyami”, Pisma v ZhTF, 36:7 (2010), 1–6 | MR