Model radioactive radon decay
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2012), pp. 18-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a model of radioactive decay of radon in the sample $\left({}^{222}Rn\right)$. The model assumes that the probability of the decay of radon and its half-life depends on the fractal properties of the geological environment. The dependencies of the decay parameters of the fractal dimension of the medium.
Mots-clés : fractal dimension
Keywords: radioactive decay, a fractional derivative.
@article{VKAM_2012_1_a2,
     author = {R. I. Parovik},
     title = {Model radioactive radon decay},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {18--23},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2012_1_a2/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Model radioactive radon decay
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2012
SP  - 18
EP  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2012_1_a2/
LA  - ru
ID  - VKAM_2012_1_a2
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Model radioactive radon decay
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2012
%P 18-23
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2012_1_a2/
%G ru
%F VKAM_2012_1_a2
R. I. Parovik. Model radioactive radon decay. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2012), pp. 18-23. http://geodesic.mathdoc.fr/item/VKAM_2012_1_a2/

[1] R. Rohlsberger, “Accelerating the spontaneous emission of X rays from atoms in cavity”, Physical Review Letters, 95:9 (2005) | DOI

[2] G. F. Novikov, Radiometricheskaya razvedka, Nedra, L., 1989, 407 pp.

[3] V. L. Mikheev, V. A. Morozov, N. V. Morozova, “O vozmozhnosti kontroliruemogo izmeneniya skorosti radioaktivnogo raspada atomnykh yader”, Pisma v EChAYa, 5:4(146) (2008), 623–627

[4] D. V. Filippov, “Uvelichenie veroyatnosti razreshennykh elektronnykh $\beta$-raspadov v sverkhsilnom magnitnom pole”, Yadernaya fizika, 70:2, 280–287

[5] V. A. Nakhusheva, Matematicheskoe modelirovanie nelokalnykh fizicheskikh protsessov v sredakh s fraktalnoi strukturoi, dics. ...d-ra fiz.-mat. nauk, Taganrog, 2008, 268 pp.

[6] S. Yu. Bedanokova, “Matematicheskoe modelirovanie solevogo rezhima pochv s fraktalnoi strukturoi”, Vestnik SamGU. Seriya Fiziko-matematicheskie nauki, 2007, no. 2(15), 102–109 | DOI

[7] A. M. Nakhushev, Drobnoe ischislenie ego primenenie, Fizmatlit, M., 2003, 272 pp.

[8] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp. | MR

[9] R. Gorenflo, J. Loutchko, Y. Luchko, “Computation of the Mittag-Leffler function and its derivative”, Fract. Calc. Appl. Anal., 5 (2002), 491–518 | MR | Zbl

[10] Parovik R.I., Firstov P.P., Makarov E.O., “Matematicheskoe modelirovanie fraktalnoi razmernosti geosredy i seismicheskaya aktivnost Yuzhnoi Kamchatki”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 2(3), 42–49 | MR

[11] E. Fischbach, “Additional experimental evidence for a solar influence on nuclear decay rates”, Astroparticle Physics, 37 (2012), 81–88 | DOI