Characteristics of an algoritm for non-stationary Poisson process estimation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2012), pp. 11-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the algorithm estimates of parameter of harmonic intensity for nonstationary Poisson process. The computational stability of the algorithm is proved.
Keywords: least squares method, non-stationary Poisson process, electromagnetic pulsed terrestrial emission.
@article{VKAM_2012_1_a1,
     author = {G. M. Vodinchar},
     title = {Characteristics of an algoritm for non-stationary {Poisson} process estimation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {11--17},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2012_1_a1/}
}
TY  - JOUR
AU  - G. M. Vodinchar
TI  - Characteristics of an algoritm for non-stationary Poisson process estimation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2012
SP  - 11
EP  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2012_1_a1/
LA  - ru
ID  - VKAM_2012_1_a1
ER  - 
%0 Journal Article
%A G. M. Vodinchar
%T Characteristics of an algoritm for non-stationary Poisson process estimation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2012
%P 11-17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2012_1_a1/
%G ru
%F VKAM_2012_1_a1
G. M. Vodinchar. Characteristics of an algoritm for non-stationary Poisson process estimation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2012), pp. 11-17. http://geodesic.mathdoc.fr/item/VKAM_2012_1_a1/