Groups with representation $\langle a, b; a^n=1, ab=b^3a^3\rangle$
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2010), pp. 8-11
Voir la notice de l'article provenant de la source Math-Net.Ru
Established that for $n = 4$ and $n\ge 7$ group $G(n) = \langle a, b; a^n=1, ab=b^3a^3\rangle$ are
infinite, and for the remaining $n$ evaluated the procedure and investigate the structure
of the group $G(n)$.
Mots-clés :
group, quotient.
Keywords: the order of the subgroup, subgroup
Keywords: the order of the subgroup, subgroup
@article{VKAM_2010_1_a0,
author = {A. P. Goryushkin},
title = {Groups with representation $\langle a, b; a^n=1, ab=b^3a^3\rangle$},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {8--11},
publisher = {mathdoc},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2010_1_a0/}
}
A. P. Goryushkin. Groups with representation $\langle a, b; a^n=1, ab=b^3a^3\rangle$. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2010), pp. 8-11. http://geodesic.mathdoc.fr/item/VKAM_2010_1_a0/