Groups with representation $\langle a, b; a^n=1, ab=b^3a^3\rangle$
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2010), pp. 8-11

Voir la notice de l'article provenant de la source Math-Net.Ru

Established that for $n = 4$ and $n\ge 7$ group $G(n) = \langle a, b; a^n=1, ab=b^3a^3\rangle$ are infinite, and for the remaining $n$ evaluated the procedure and investigate the structure of the group $G(n)$.
Mots-clés : group, quotient.
Keywords: the order of the subgroup, subgroup
@article{VKAM_2010_1_a0,
     author = {A. P. Goryushkin},
     title = {Groups with representation $\langle a, b; a^n=1, ab=b^3a^3\rangle$},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {8--11},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2010_1_a0/}
}
TY  - JOUR
AU  - A. P. Goryushkin
TI  - Groups with representation $\langle a, b; a^n=1, ab=b^3a^3\rangle$
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2010
SP  - 8
EP  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2010_1_a0/
LA  - ru
ID  - VKAM_2010_1_a0
ER  - 
%0 Journal Article
%A A. P. Goryushkin
%T Groups with representation $\langle a, b; a^n=1, ab=b^3a^3\rangle$
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2010
%P 8-11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2010_1_a0/
%G ru
%F VKAM_2010_1_a0
A. P. Goryushkin. Groups with representation $\langle a, b; a^n=1, ab=b^3a^3\rangle$. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2010), pp. 8-11. http://geodesic.mathdoc.fr/item/VKAM_2010_1_a0/