A note on the Grothendieck group of an additive category
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 135-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are two abelian groups which can naturally be associated to an additive category $\mathcal{A}$: the split Grothendieck group of $\mathcal{A}$ and the triangulated Grothendieck group of the homotopy category of (bounded) complexes in $\mathcal{A}$. We prove that these groups are isomorphic. Along the way, we deduce that the ‘Euler characteristic’ of a complex in $\mathcal{A}$ is invariant under homotopy equivalence, a result which has implications for (de)categorification.
Keywords: Grothendieck group, additive category, categorification.
@article{VCHGU_2015_17_a9,
     author = {D. Rose},
     title = {A note on the {Grothendieck} group of an additive category},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {135--139},
     year = {2015},
     number = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a9/}
}
TY  - JOUR
AU  - D. Rose
TI  - A note on the Grothendieck group of an additive category
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2015
SP  - 135
EP  - 139
IS  - 17
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a9/
LA  - en
ID  - VCHGU_2015_17_a9
ER  - 
%0 Journal Article
%A D. Rose
%T A note on the Grothendieck group of an additive category
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2015
%P 135-139
%N 17
%U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a9/
%G en
%F VCHGU_2015_17_a9
D. Rose. A note on the Grothendieck group of an additive category. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 135-139. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a9/

[1] M. Khovanov, V. Mazorchuk, C. Stroppel, “A brief review of abelian categorifications”, Theory Appl. Categ., 22:19 (2009), 479–508 | MR | Zbl

[2] D. Bar-Natan, “Khovanov's homology for tangles and cobordisms”, Geom. Topol., 9 (2005), 1443–1499 | DOI | MR | Zbl

[3] S. Morrison, A. Nieh, “On {K}hovanov's cobordism theory for {$\mathfrak{su}_3$} knot homology”, J. Knot Theory Ramifications, 17:9 (2008), 1121–1173 | DOI | MR | Zbl

[4] D. E. V. Rose, “A categorification of quantum $\mathfrak{sl}_3$ projectors and the $\mathfrak{sl}_3$ {R}eshetikhin–{T}uraev invariant of tangles”, Quantum Topol., 5:1 (2014), 1–59 | DOI | MR | Zbl

[5] E. H. Spanier., Algebraic topology, Springer-Verlag, New York, 1966 | MR

[6] B. Cooper, V. Krushkal, “Categorification of the {J}ones–{W}enzl projectors”, Quantum Topol., 3:2 (2012), 139–180, arXiv: 1005.5117 | DOI | MR | Zbl

[7] L. Rozansky, An infinite torus braid yields a categorified {J}ones–{W}enzl projector, arXiv: 1005.3266 | MR

[8] I. Frenkel, C. Stroppel, J. Sussan, “Categorifying fractional {E}uler characteristics, {J}ones–{W}enzl projectors and {$3j$}-symbols”, Quantum Topol., 3:2 (2012), 181–253, arXiv: 1007.4680 | DOI | MR | Zbl

[9] P. N. Achar, C. Stroppel, Completions of {G}rothendieck groups, arXiv: 1105.2715 | MR

[10] S. Cautis, Clasp technology to knot homology via the affine {G}rassmannian, arXiv: 1207.2074 | MR

[11] D. E. V. Rose, Categorification of quantum $\mathfrak{sl}_3$ projectors and the $\mathfrak{sl}_3$ {R}eshetikhin–{T}uraev invariant of framed tangles, Ph.D. thesis, Duke University Publ., New York, 2012 | MR