@article{VCHGU_2015_17_a9,
author = {D. Rose},
title = {A note on the {Grothendieck} group of an additive category},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {135--139},
year = {2015},
number = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a9/}
}
TY - JOUR AU - D. Rose TI - A note on the Grothendieck group of an additive category JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2015 SP - 135 EP - 139 IS - 17 UR - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a9/ LA - en ID - VCHGU_2015_17_a9 ER -
D. Rose. A note on the Grothendieck group of an additive category. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 135-139. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a9/
[1] M. Khovanov, V. Mazorchuk, C. Stroppel, “A brief review of abelian categorifications”, Theory Appl. Categ., 22:19 (2009), 479–508 | MR | Zbl
[2] D. Bar-Natan, “Khovanov's homology for tangles and cobordisms”, Geom. Topol., 9 (2005), 1443–1499 | DOI | MR | Zbl
[3] S. Morrison, A. Nieh, “On {K}hovanov's cobordism theory for {$\mathfrak{su}_3$} knot homology”, J. Knot Theory Ramifications, 17:9 (2008), 1121–1173 | DOI | MR | Zbl
[4] D. E. V. Rose, “A categorification of quantum $\mathfrak{sl}_3$ projectors and the $\mathfrak{sl}_3$ {R}eshetikhin–{T}uraev invariant of tangles”, Quantum Topol., 5:1 (2014), 1–59 | DOI | MR | Zbl
[5] E. H. Spanier., Algebraic topology, Springer-Verlag, New York, 1966 | MR
[6] B. Cooper, V. Krushkal, “Categorification of the {J}ones–{W}enzl projectors”, Quantum Topol., 3:2 (2012), 139–180, arXiv: 1005.5117 | DOI | MR | Zbl
[7] L. Rozansky, An infinite torus braid yields a categorified {J}ones–{W}enzl projector, arXiv: 1005.3266 | MR
[8] I. Frenkel, C. Stroppel, J. Sussan, “Categorifying fractional {E}uler characteristics, {J}ones–{W}enzl projectors and {$3j$}-symbols”, Quantum Topol., 3:2 (2012), 181–253, arXiv: 1007.4680 | DOI | MR | Zbl
[9] P. N. Achar, C. Stroppel, Completions of {G}rothendieck groups, arXiv: 1105.2715 | MR
[10] S. Cautis, Clasp technology to knot homology via the affine {G}rassmannian, arXiv: 1207.2074 | MR
[11] D. E. V. Rose, Categorification of quantum $\mathfrak{sl}_3$ projectors and the $\mathfrak{sl}_3$ {R}eshetikhin–{T}uraev invariant of framed tangles, Ph.D. thesis, Duke University Publ., New York, 2012 | MR