An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 67-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The finite type invariant concept for knots was introduced in the 90's in order to classify knot invariants, with the work of Vassiliev, Goussarov and Bar-Natan, shortly after the birth of numerous quantum knot invariants. This very useful concept was extended to $3$-manifold invariants by Ohtsuki. These introductory lectures show how to define finite type invariants of links and $3$-manifolds by counting graph configurations in $3$-manifolds, following ideas of Witten and Kontsevich. The linking number is the simplest finite type invariant for $2$-component links. It is defined in many equivalent ways in the first section. As an important example, we present it as the algebraic intersection of a torus and a $4$-chain called a propagator in a configuration space. In the second section, we introduce the simplest finite type $3$-manifold invariant, which is the Casson invariant (or the $\Theta$-invariant) of integer homology $3$-spheres. It is defined as the algebraic intersection of three propagators in the same two-point configuration space. In the third section, we explain the general notion of finite type invariants and introduce relevant spaces of Feynman Jacobi diagrams. In Sections 4 and 5, we sketch an original construction based on configuration space integrals of universal finite type invariants for links in rational homology $3$-spheres and we state open problems. Our construction generalizes the known constructions for links in $\mathbb{R}^3$ and for rational homology $3$-spheres, and it makes them more flexible. In Section 6, we present the needed properties of parallelizations of $3$-manifolds and associated Pontrjagin classes, in details.
Keywords: knots, $3$-manifolds, homology $3$-spheres, linking number, Casson-Walker invariant, Feynman Jacobi diagrams, perturbative expansion of Chern–Simons theory, configuration space integrals, parallelizations of $3$-manifolds
Mots-clés : finite type invariants, Theta invariant, first Pontrjagin class.
@article{VCHGU_2015_17_a7,
     author = {C. Lescop},
     title = {An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {67--117},
     year = {2015},
     number = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a7/}
}
TY  - JOUR
AU  - C. Lescop
TI  - An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2015
SP  - 67
EP  - 117
IS  - 17
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a7/
LA  - en
ID  - VCHGU_2015_17_a7
ER  - 
%0 Journal Article
%A C. Lescop
%T An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2015
%P 67-117
%N 17
%U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a7/
%G en
%F VCHGU_2015_17_a7
C. Lescop. An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 67-117. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a7/

[1] C. Lescop, Invariants of links and $3$-manifolds from graph configurations, In preparation, 2015

[2] K. Gauss, “Zur mathematischen {T}heorie der electrodynamischen {W}irkungen manuscript”, {W}erke, Königl. Ges. Wiss., Göttingen, 1877, 601–630

[3] M. J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York–Amsterdam, 1967 | MR | Zbl

[4] M. W. Hirsch, Differential topology, Springer-Verlag, New York, 1994 | MR

[5] J. W. Milnor., Topology from the differentiable viewpoint, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl

[6] C. Lescop, A formula for the $\Theta$-invariant from {H}eegaard diagrams, arXiv: 1209.3219 | MR

[7] R. Kirby, P. Melvin, “Canonical framings for {$3$}-manifolds”, Turkish J. Math., 23:1 (1999), 89–115 | MR | Zbl

[8] F. E. P. Hirzebruch, “Hilbert modular surfaces”, Enseignement Math., 19:2 (1973), 183–281 | MR | Zbl

[9] G. Kuperberg, D. Thurston, Perturbative 3-manifold invariants by cut-and-paste topology, arXiv: 9912167

[10] S. Akbulut, J. D. McCarthy, Casson's invariant for oriented homology {$3$}-spheres, Princeton University Press, Princeton, 1990 | MR | Zbl

[11] L. Guillou, A. Marin, “Notes sur l'invariant de {C}asson des sphères d'homologie de dimension trois”, Enseign. Math., 38:3-4 (1992), 233–290 | MR | Zbl

[12] A. Marin, “Un nouvel invariant pour les sphères d'homologie de dimension trois (d'après {C}asson)”, Astérisque, no. 161–162, 1988, 151–164 | MR | Zbl

[13] C. Lescop, Splitting formulae for the {K}ontsevich-{K}uperberg-{T}hurston invariant of rational homology 3-spheres, arXiv: 0411431

[14] K. Walker, An extension of {C}asson's invariant, Princeton University Press, Princeton, 1992 | MR | Zbl

[15] D. Bar-Natan, “On the {V}assiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl

[16] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to {V}assiliev knot invariants, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[17] T. Ohtsuki, “Finite type invariants of integral homology {$3$}-spheres”, J. Knot Theory Ramifications, 5:1 (1996), 101–115 | DOI | MR | Zbl

[18] S. Garoufalidis, M. Goussarov, M. Polyak, “Calculus of clovers and finite type invariants of 3-manifolds”, Geom. Topol., 5 (2001), 75–108 | DOI | MR | Zbl

[19] K. Habiro, “Claspers and finite type invariants of links”, Geom. Topol., 4 (2000), 1–83 | DOI | MR | Zbl

[20] T. T. Q. Le, An invariant of integral homology {$3$}-spheres which is universal for all finite type invariants, arXiv: 9601002 | MR

[21] D. Moussard, “Finite type invariants of rational homology 3-spheres”, Algebr. Geom. Topol., 12 (2012), 2389–2428 | DOI | MR | Zbl

[22] C. Lescop, “Knot invariants and configuration space integrals”, Geometric and topological methods for quantum field theory, Springer Publ., Berlin, 2005, 1–57 | DOI | MR | Zbl

[23] S. Chmutov, S. Duzhin, “The {K}ontsevich integral”, Acta Appl. Math., 66:2 (2001), 155–190 | DOI | MR | Zbl

[24] T. T. Q. Le, J. Murakami, “The universal {V}assiliev-{K}ontsevich invariant for framed oriented links”, Compositio Math., 102:1 (1996), 41–64 | MR | Zbl

[25] V. G. Turaev, “Operator invariants of tangles, and {$R$}-matrices”, Izv. Akad. Nauk SSSR. Ser. Mat., 53:5 (1989), 1073–1107 | MR

[26] N. Y. Reshetikhin, V. G. Turaev, “Ribbon graphs and their invariants derived from quantum groups”, Comm. Math. Phys., 127:1 (1990), 1–26 | DOI | MR | Zbl

[27] P. Vogel, “Algebraic structures on modules of diagrams”, J. Pure Appl. Algebra, 215:6 (2011), 1292–1339 | DOI | MR | Zbl

[28] T. T. Q. Le, J. Murakami, T. Ohtsuki, “On a universal perturbative invariant of {$3$}-manifolds”, Topology, 37:3 (1998), 539–574 | DOI | MR | Zbl

[29] T. Kuriya, T. T. Q. Le, T. Ohtsuki, “The perturbative invariants of rational homology 3-spheres can be recovered from the {LMO} invariant”, J. Topol., 5:2 (2012), 458–484 | DOI | MR | Zbl

[30] N. Y. Reshetikhin, V. G. Turaev, “Invariants of {$3$}-manifolds via link polynomials and quantum groups”, Invent. Math., 103:3 (1991), 547–597 | DOI | MR | Zbl

[31] C. Lescop, On the {K}ontsevich-{K}uperberg-{T}hurston construction of a configuration-space invariant for rational homology 3-spheres, arXiv: 0411088

[32] D. Altschüler, L. Freidel, “Vassiliev knot invariants and {C}hern-{S}imons perturbation theory to all orders”, Comm. Math. Phys., 187:2 (1997), 261–287 | DOI | MR | Zbl

[33] D. Thurston, Integral expressions for the {V}assiliev knot invariants, arXiv: 9901110

[34] S. Poirier, “he configuration space integral for links in {$\mathbb{R}\sp 3$}”, Algebr. Geom. Topol., 2 (2002), 1001–1050 | DOI | MR | Zbl

[35] E. Witten, “Quantum field theory and the {J}ones polynomial”, Comm. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl

[36] E. Guadagnini, M. Martellini, M. Mintchev, “Wilson lines in {C}hern-{S}imons theory and link invariants”, Nuclear Phys. B, 330:2-3 (1990), 575–607 | DOI | MR

[37] M. Kontsevich, Feynman diagrams and low-dimensional topology, www.ihes.fr/~maxim/TEXTS/Feynman

[38] M. Kontsevich, Vassiliev's knot invariants, http://www.ihes.fr/m̃axim/TEXTS/ VassilievKnot.pdf

[39] R. Bott, C. Taubes, “On the self-linking of knots”, J. Math. Phys., 35:10 (1994), 5247–5287 | DOI | MR | Zbl

[40] D. Bar-Natan, “Perturbative {C}hern-{S}imons theory”, Knot Theory Ramifications, 4:4 (1995), 503–547 | DOI | MR | Zbl

[41] S. Axelrod, I. M. Singer, Chern-{S}imons perturbation theory, arXiv: 9110056 | MR

[42] S. Axelrod, I. M. Singer, “Chern-{S}imons perturbation theory. {II}”, J. Differential Geom., 39:1 (1994), 173–213 | MR | Zbl

[43] S. V. Matveev, “Generalized surgeries of three-dimensional manifolds and representations of homology spheres”, Mat. Zametki, 42:2 (1987), 268–278 | MR

[44] E. Auclair, C. Lescop, “Clover calculus for homology 3-spheres via basic algebraic topology”, Algebr. Geom. Topol., 5 (2005), 71–106 | DOI | MR | Zbl

[45] C. Lescop, “About the uniqueness of the {K}ontsevich integral”, J. Knot Theory Ramifications, 11:5 (2002), 759–780 | DOI | MR | Zbl

[46] D. Bar-Natan, R. Lawrence, “A rational surgery formula for the {LMO} invariant”, Israel J. Math., 140 (2004), 29–60 | DOI | MR | Zbl

[47] T. {Shimizu}, An invariant of rational homology 3-spheres via vector fields, arXiv: 1311.1863 | MR

[48] T. {Watanabe}, Higher order generalization of Fukaya's Morse homotopy invariant of 3-manifolds I. Invariants of homology 3-spheres, arXiv: 1202.5754v2

[49] A. {Kricker}, The lines of the {K}ontsevich integral and {R}ozansky's rationality conjecture, arXiv: 0005284

[50] S. Garoufalidis, A. Kricker, “A rational noncommutative invariant of boundary links”, Geom. Topol., 8 (2004), 115–204 | DOI | MR | Zbl

[51] C. Lescop, Invariants of knots and 3-manifolds derived from the equivariant linking pairing, http://en.youscribe.com/catalogue/educational-resources/education/ others/invariants-of-knots-and-3-manifolds-derived-from-the-equivariant-1711545

[52] C. Lescop, A universal equivariant finite type knot invariant defined from configuration space integrals, arXiv: 1306.1705

[53] R. C. Kirby, The topology of {$4$}-manifolds, Springer-Verlag, Berlin, 1989 | MR | Zbl

[54] N. Steenrod, The {T}opology of {F}ibre {B}undles, Princeton University Press, Princeton, 1951 | MR | Zbl

[55] J. R. Munkres, Elementary differential topology, Princeton University Press, Princeton, 1966 | MR | Zbl

[56] J. W. Milnor, J. D. Stasheff, Characteristic classes, Princeton University Press, Princeton, 1974 | MR | Zbl

[57] V. A. Rohlin, “New results in the theory of four-dimensional manifolds”, Doklady Akad. Nauk SSSR, 84 (1952), 221–224 | MR

[58] L. Guillou, A. Marin, À la recherche de la topologie perdue, Birkhäuser Boston Inc., Boston, 1986 | Zbl

[59] N. H. Kuiper, “A short history of triangulation and related matters”, History of topology, 1999, 491–502, North-Holland, Amsterdam | DOI | MR

[60] H. Whitney, “Differentiable manifolds”, Ann. of Math., 37:3 (1936), 645–680 | DOI | MR

[61] S. S. Cairns, “Triangulation of the manifold of class one”, Bull. Amer. Math. Soc., 41:8 (1935), 549–552 | DOI | MR

[62] S. S. Cairns, “Homeomorphisms between topological manifolds and analytic manifolds”, Ann. of Math., 41:2 (1940), 796–808 | DOI | MR

[63] E. E. Moise, “Affine structures in {$3$}-manifolds. {V}. {T}he triangulation theorem and {H}auptvermutung”, Ann. of Math., 56:2 (1952), 96–114 | DOI | MR | Zbl

[64] J. Munkres, “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math., 72 (1960), 521–554 | DOI | MR | Zbl

[65] J. H. C. Whitehead, “Manifolds with transverse fields in euclidean space”, Ann. of Math., 73:2 (1961), 154–212 | DOI | MR | Zbl