Mots-clés : finite type invariants, Theta invariant, first Pontrjagin class.
@article{VCHGU_2015_17_a7,
author = {C. Lescop},
title = {An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {67--117},
year = {2015},
number = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a7/}
}
TY - JOUR AU - C. Lescop TI - An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2015 SP - 67 EP - 117 IS - 17 UR - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a7/ LA - en ID - VCHGU_2015_17_a7 ER -
%0 Journal Article %A C. Lescop %T An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2015 %P 67-117 %N 17 %U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a7/ %G en %F VCHGU_2015_17_a7
C. Lescop. An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 67-117. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a7/
[1] C. Lescop, Invariants of links and $3$-manifolds from graph configurations, In preparation, 2015
[2] K. Gauss, “Zur mathematischen {T}heorie der electrodynamischen {W}irkungen manuscript”, {W}erke, Königl. Ges. Wiss., Göttingen, 1877, 601–630
[3] M. J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York–Amsterdam, 1967 | MR | Zbl
[4] M. W. Hirsch, Differential topology, Springer-Verlag, New York, 1994 | MR
[5] J. W. Milnor., Topology from the differentiable viewpoint, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl
[6] C. Lescop, A formula for the $\Theta$-invariant from {H}eegaard diagrams, arXiv: 1209.3219 | MR
[7] R. Kirby, P. Melvin, “Canonical framings for {$3$}-manifolds”, Turkish J. Math., 23:1 (1999), 89–115 | MR | Zbl
[8] F. E. P. Hirzebruch, “Hilbert modular surfaces”, Enseignement Math., 19:2 (1973), 183–281 | MR | Zbl
[9] G. Kuperberg, D. Thurston, Perturbative 3-manifold invariants by cut-and-paste topology, arXiv: 9912167
[10] S. Akbulut, J. D. McCarthy, Casson's invariant for oriented homology {$3$}-spheres, Princeton University Press, Princeton, 1990 | MR | Zbl
[11] L. Guillou, A. Marin, “Notes sur l'invariant de {C}asson des sphères d'homologie de dimension trois”, Enseign. Math., 38:3-4 (1992), 233–290 | MR | Zbl
[12] A. Marin, “Un nouvel invariant pour les sphères d'homologie de dimension trois (d'après {C}asson)”, Astérisque, no. 161–162, 1988, 151–164 | MR | Zbl
[13] C. Lescop, Splitting formulae for the {K}ontsevich-{K}uperberg-{T}hurston invariant of rational homology 3-spheres, arXiv: 0411431
[14] K. Walker, An extension of {C}asson's invariant, Princeton University Press, Princeton, 1992 | MR | Zbl
[15] D. Bar-Natan, “On the {V}assiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl
[16] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to {V}assiliev knot invariants, Cambridge University Press, Cambridge, 2012 | MR | Zbl
[17] T. Ohtsuki, “Finite type invariants of integral homology {$3$}-spheres”, J. Knot Theory Ramifications, 5:1 (1996), 101–115 | DOI | MR | Zbl
[18] S. Garoufalidis, M. Goussarov, M. Polyak, “Calculus of clovers and finite type invariants of 3-manifolds”, Geom. Topol., 5 (2001), 75–108 | DOI | MR | Zbl
[19] K. Habiro, “Claspers and finite type invariants of links”, Geom. Topol., 4 (2000), 1–83 | DOI | MR | Zbl
[20] T. T. Q. Le, An invariant of integral homology {$3$}-spheres which is universal for all finite type invariants, arXiv: 9601002 | MR
[21] D. Moussard, “Finite type invariants of rational homology 3-spheres”, Algebr. Geom. Topol., 12 (2012), 2389–2428 | DOI | MR | Zbl
[22] C. Lescop, “Knot invariants and configuration space integrals”, Geometric and topological methods for quantum field theory, Springer Publ., Berlin, 2005, 1–57 | DOI | MR | Zbl
[23] S. Chmutov, S. Duzhin, “The {K}ontsevich integral”, Acta Appl. Math., 66:2 (2001), 155–190 | DOI | MR | Zbl
[24] T. T. Q. Le, J. Murakami, “The universal {V}assiliev-{K}ontsevich invariant for framed oriented links”, Compositio Math., 102:1 (1996), 41–64 | MR | Zbl
[25] V. G. Turaev, “Operator invariants of tangles, and {$R$}-matrices”, Izv. Akad. Nauk SSSR. Ser. Mat., 53:5 (1989), 1073–1107 | MR
[26] N. Y. Reshetikhin, V. G. Turaev, “Ribbon graphs and their invariants derived from quantum groups”, Comm. Math. Phys., 127:1 (1990), 1–26 | DOI | MR | Zbl
[27] P. Vogel, “Algebraic structures on modules of diagrams”, J. Pure Appl. Algebra, 215:6 (2011), 1292–1339 | DOI | MR | Zbl
[28] T. T. Q. Le, J. Murakami, T. Ohtsuki, “On a universal perturbative invariant of {$3$}-manifolds”, Topology, 37:3 (1998), 539–574 | DOI | MR | Zbl
[29] T. Kuriya, T. T. Q. Le, T. Ohtsuki, “The perturbative invariants of rational homology 3-spheres can be recovered from the {LMO} invariant”, J. Topol., 5:2 (2012), 458–484 | DOI | MR | Zbl
[30] N. Y. Reshetikhin, V. G. Turaev, “Invariants of {$3$}-manifolds via link polynomials and quantum groups”, Invent. Math., 103:3 (1991), 547–597 | DOI | MR | Zbl
[31] C. Lescop, On the {K}ontsevich-{K}uperberg-{T}hurston construction of a configuration-space invariant for rational homology 3-spheres, arXiv: 0411088
[32] D. Altschüler, L. Freidel, “Vassiliev knot invariants and {C}hern-{S}imons perturbation theory to all orders”, Comm. Math. Phys., 187:2 (1997), 261–287 | DOI | MR | Zbl
[33] D. Thurston, Integral expressions for the {V}assiliev knot invariants, arXiv: 9901110
[34] S. Poirier, “he configuration space integral for links in {$\mathbb{R}\sp 3$}”, Algebr. Geom. Topol., 2 (2002), 1001–1050 | DOI | MR | Zbl
[35] E. Witten, “Quantum field theory and the {J}ones polynomial”, Comm. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl
[36] E. Guadagnini, M. Martellini, M. Mintchev, “Wilson lines in {C}hern-{S}imons theory and link invariants”, Nuclear Phys. B, 330:2-3 (1990), 575–607 | DOI | MR
[37] M. Kontsevich, Feynman diagrams and low-dimensional topology, www.ihes.fr/~maxim/TEXTS/Feynman
[38] M. Kontsevich, Vassiliev's knot invariants, http://www.ihes.fr/m̃axim/TEXTS/ VassilievKnot.pdf
[39] R. Bott, C. Taubes, “On the self-linking of knots”, J. Math. Phys., 35:10 (1994), 5247–5287 | DOI | MR | Zbl
[40] D. Bar-Natan, “Perturbative {C}hern-{S}imons theory”, Knot Theory Ramifications, 4:4 (1995), 503–547 | DOI | MR | Zbl
[41] S. Axelrod, I. M. Singer, Chern-{S}imons perturbation theory, arXiv: 9110056 | MR
[42] S. Axelrod, I. M. Singer, “Chern-{S}imons perturbation theory. {II}”, J. Differential Geom., 39:1 (1994), 173–213 | MR | Zbl
[43] S. V. Matveev, “Generalized surgeries of three-dimensional manifolds and representations of homology spheres”, Mat. Zametki, 42:2 (1987), 268–278 | MR
[44] E. Auclair, C. Lescop, “Clover calculus for homology 3-spheres via basic algebraic topology”, Algebr. Geom. Topol., 5 (2005), 71–106 | DOI | MR | Zbl
[45] C. Lescop, “About the uniqueness of the {K}ontsevich integral”, J. Knot Theory Ramifications, 11:5 (2002), 759–780 | DOI | MR | Zbl
[46] D. Bar-Natan, R. Lawrence, “A rational surgery formula for the {LMO} invariant”, Israel J. Math., 140 (2004), 29–60 | DOI | MR | Zbl
[47] T. {Shimizu}, An invariant of rational homology 3-spheres via vector fields, arXiv: 1311.1863 | MR
[48] T. {Watanabe}, Higher order generalization of Fukaya's Morse homotopy invariant of 3-manifolds I. Invariants of homology 3-spheres, arXiv: 1202.5754v2
[49] A. {Kricker}, The lines of the {K}ontsevich integral and {R}ozansky's rationality conjecture, arXiv: 0005284
[50] S. Garoufalidis, A. Kricker, “A rational noncommutative invariant of boundary links”, Geom. Topol., 8 (2004), 115–204 | DOI | MR | Zbl
[51] C. Lescop, Invariants of knots and 3-manifolds derived from the equivariant linking pairing, http://en.youscribe.com/catalogue/educational-resources/education/ others/invariants-of-knots-and-3-manifolds-derived-from-the-equivariant-1711545
[52] C. Lescop, A universal equivariant finite type knot invariant defined from configuration space integrals, arXiv: 1306.1705
[53] R. C. Kirby, The topology of {$4$}-manifolds, Springer-Verlag, Berlin, 1989 | MR | Zbl
[54] N. Steenrod, The {T}opology of {F}ibre {B}undles, Princeton University Press, Princeton, 1951 | MR | Zbl
[55] J. R. Munkres, Elementary differential topology, Princeton University Press, Princeton, 1966 | MR | Zbl
[56] J. W. Milnor, J. D. Stasheff, Characteristic classes, Princeton University Press, Princeton, 1974 | MR | Zbl
[57] V. A. Rohlin, “New results in the theory of four-dimensional manifolds”, Doklady Akad. Nauk SSSR, 84 (1952), 221–224 | MR
[58] L. Guillou, A. Marin, À la recherche de la topologie perdue, Birkhäuser Boston Inc., Boston, 1986 | Zbl
[59] N. H. Kuiper, “A short history of triangulation and related matters”, History of topology, 1999, 491–502, North-Holland, Amsterdam | DOI | MR
[60] H. Whitney, “Differentiable manifolds”, Ann. of Math., 37:3 (1936), 645–680 | DOI | MR
[61] S. S. Cairns, “Triangulation of the manifold of class one”, Bull. Amer. Math. Soc., 41:8 (1935), 549–552 | DOI | MR
[62] S. S. Cairns, “Homeomorphisms between topological manifolds and analytic manifolds”, Ann. of Math., 41:2 (1940), 796–808 | DOI | MR
[63] E. E. Moise, “Affine structures in {$3$}-manifolds. {V}. {T}he triangulation theorem and {H}auptvermutung”, Ann. of Math., 56:2 (1952), 96–114 | DOI | MR | Zbl
[64] J. Munkres, “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math., 72 (1960), 521–554 | DOI | MR | Zbl
[65] J. H. C. Whitehead, “Manifolds with transverse fields in euclidean space”, Ann. of Math., 73:2 (1961), 154–212 | DOI | MR | Zbl