The $q$-binomial formula and the Rogers dilogarithm identity
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 62-66
Cet article a éte moissonné depuis la source Math-Net.Ru
The $q$-binomial formula in the limit $q\to 1^-$ is shown to be equivalent to the Rogers five term dilogarithm identity.
Keywords:
dilogarithm identity.
Mots-clés : $q$-binomial formula
Mots-clés : $q$-binomial formula
@article{VCHGU_2015_17_a6,
author = {R. M. Kashaev},
title = {The $q$-binomial formula and the {Rogers} dilogarithm identity},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {62--66},
year = {2015},
number = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a6/}
}
TY - JOUR AU - R. M. Kashaev TI - The $q$-binomial formula and the Rogers dilogarithm identity JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2015 SP - 62 EP - 66 IS - 17 UR - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a6/ LA - en ID - VCHGU_2015_17_a6 ER -
R. M. Kashaev. The $q$-binomial formula and the Rogers dilogarithm identity. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 62-66. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a6/
[1] G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Second edition, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[2] L. D. Faddeev, R. M. Kashaev, “Quantum dilogarithm”, Modern Phys. Lett. A., 9:5 (1994), 427–434 | DOI | MR | Zbl
[3] A. N. Kirillov, “Dilogarithm identities”, Progr. Theoret. Phys. Suppl., 118 (1995), 61–142 | DOI | MR | Zbl