The $q$-binomial formula and the Rogers dilogarithm identity
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 62-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $q$-binomial formula in the limit $q\to 1^-$ is shown to be equivalent to the Rogers five term dilogarithm identity.
Keywords: dilogarithm identity.
Mots-clés : $q$-binomial formula
@article{VCHGU_2015_17_a6,
     author = {R. M. Kashaev},
     title = {The $q$-binomial formula and the {Rogers} dilogarithm identity},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {62--66},
     year = {2015},
     number = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a6/}
}
TY  - JOUR
AU  - R. M. Kashaev
TI  - The $q$-binomial formula and the Rogers dilogarithm identity
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2015
SP  - 62
EP  - 66
IS  - 17
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a6/
LA  - en
ID  - VCHGU_2015_17_a6
ER  - 
%0 Journal Article
%A R. M. Kashaev
%T The $q$-binomial formula and the Rogers dilogarithm identity
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2015
%P 62-66
%N 17
%U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a6/
%G en
%F VCHGU_2015_17_a6
R. M. Kashaev. The $q$-binomial formula and the Rogers dilogarithm identity. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 62-66. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a6/

[1] G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Second edition, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[2] L. D. Faddeev, R. M. Kashaev, “Quantum dilogarithm”, Modern Phys. Lett. A., 9:5 (1994), 427–434 | DOI | MR | Zbl

[3] A. N. Kirillov, “Dilogarithm identities”, Progr. Theoret. Phys. Suppl., 118 (1995), 61–142 | DOI | MR | Zbl