Mots-clés : moment, resolvant, Hadamard product, norm.
@article{VCHGU_2015_17_a5,
author = {S. Garoufalidis and J. Bellissard},
title = {Algebraic $G$-functions associated to matrices over a group-ring},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {50--61},
year = {2015},
number = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/}
}
TY - JOUR AU - S. Garoufalidis AU - J. Bellissard TI - Algebraic $G$-functions associated to matrices over a group-ring JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2015 SP - 50 EP - 61 IS - 17 UR - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/ LA - en ID - VCHGU_2015_17_a5 ER -
%0 Journal Article %A S. Garoufalidis %A J. Bellissard %T Algebraic $G$-functions associated to matrices over a group-ring %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2015 %P 50-61 %N 17 %U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/ %G en %F VCHGU_2015_17_a5
S. Garoufalidis; J. Bellissard. Algebraic $G$-functions associated to matrices over a group-ring. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 50-61. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/
[1] W. Woess, “Context-free languages and random walks on groups”, Discrete Math., 67:1 (1987), 81–87 | DOI | MR | Zbl
[2] W. Woess, Random walks on infinite graphs and groups, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[3] R. Sauer., “Power series over the group ring of a free group and applications to {N}ovikov–{S}hubin invariants”, High-dimensional manifold topology, World Sci. Publ., NJ, River Edge, 2003, 449–468 | DOI | MR | Zbl
[4] D. Voiculescu, “Operations on certain non-commutative operator-valued random variables”, Astérisque, 232, 1995, 243–275 | MR | Zbl
[5] D. Voiculescu, “Free probability and the von {N}eumann algebras of free groups”, Rep. Math. Phys., 55:1 (2005), 127–133 | DOI | MR | Zbl
[6] A. Kazuhiko, “Spectral theory on a free group and algebraic curves”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31:2 (1984), 297–318 | MR | Zbl
[7] P.-A. Cherix, A. Valette, “On spectra of simple random walks on one-relator groups”, Pacific J. Math., 175:2 (1996), 417–438 | DOI | MR | Zbl
[8] S. P. Lalley, “Finite range random walk on free groups and homogeneous trees”, Ann. Probab., 21:4 (1993), 2087–2130 | DOI | MR | Zbl
[9] F. Lehner, “Computing norms of free operators with matrix coefficients”, Amer. J. Math., 121:3 (1999), 453–486 | DOI | MR | Zbl
[10] F. Lehner, “On the computation of spectra in free probability”, J. Funct. Anal., 183:2 (2001), 451–471 | DOI | MR | Zbl
[11] C. Kassel, C. Reutenauer, “Algebraicity of the zeta function associated to a matrix over a free group algebra”, Algebra Number Theory, 8-2 (2014), 497–511 | DOI | MR | Zbl
[12] C. L. Siegel, “Über einige Anwendungen diophantischer Approximationen”, Gesammelte Abhandlungen, v. I, 1966, 209–266 | DOI | MR
[13] P. Deligne, Équations différentielles à points singuliers réguliers, Springer-Verlag Publ., Berlin, 1970 | MR
[14] N. M. Katz, “Nilpotent connections and the monodromy theorem: {A}pplications of a result of {T}urrittin”, Inst. Hautes Études Sci. Publ. Math., 1970, no. 39, 175–232 | DOI | MR | Zbl
[15] B. Malgrange, “Intégrales asymptotiques et monodromie”, Ann. Sci. École Norm. Sup., 7:4 (1974), 405–430 | MR | Zbl
[16] A. Yves, “Séries {G}evrey de type arithmétique. {I}. {T}héorèmes de pureté et de dualité”, Ann. of Math., 151:2 (2000), 705–740 | DOI | MR | Zbl
[17] E. Bombieri., “On {$G$}-functions”, Recent progress in analytic number theory, 2 (1981), 1–67, Academic Press, London | MR
[18] B. Dwork, G. Gerotto, F.-J. Sullivan, An introduction to {$G$}-functions, Princeton University Press, Princeton, 1994 | MR | Zbl
[19] S. Garoufalidis, “{$G$}-functions and multisum versus holonomic sequences”, Adv. Math., 220:6 (2009), 1945–1955 | DOI | MR | Zbl
[20] W. Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications Inc., New York, 1987 | MR | Zbl
[21] O. Cormier, M. F. Singer, B. M. Trager, F. Ulmer, “Linear differential operators for polynomial equations”, J. Symbolic Comput., 34:5 (2002), 355–398 | DOI | MR | Zbl
[22] M. Dwork, A. J. van der Poorten, “The {E}isenstein constant”, Duke Math. J., 65:1 (1992), 23–43 | DOI | MR | Zbl
[23] A. Chamber-Loir, “Théorèmes d'algébricité en géométrie diophantienne”, d'après {J}.-{B}. {B}ost, {Y}. {A}ndré, {D}. {G}. {C}hudnovsky, Astérisque, 282, no. 886, 2002, viii, 175–209 | MR
[24] N. Nilsson, “Some growth and ramification properties of certain integrals on algebraic manifolds”, Ark. Mat., 5 (1965), 463–476 | DOI | MR | Zbl
[25] R. Jungen, “Sur les séries de {T}aylor n'ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence”, Comment. Math. Helv., 3:1 (1931), 266–306 | DOI | MR
[26] O. Costin, S. Garoufalidis, “Resurgence of the {K}ontsevich–{Z}agier series”, Ann. Inst. Fourier (Grenoble), 61:3 (2011), 1225–1258 | DOI | MR | Zbl
[27] J. J. Duistermaat, W. van der Kallen, “Constant terms in powers of a {L}aurent polynomial”, Indag. Math. (N. S.), 9:2 (1998), 221–231 | DOI | MR | Zbl
[28] M. Haiman, “Noncommutative rational power series and algebraic generating functions”, European J. Combin., 14:4 (1933), 335–339 | DOI | MR
[29] E. Borel, “Sur les singularités des séries de {T}aylor”, Bull. Soc. Math. France, 26 (1898), 238–248 | DOI | MR | Zbl
[30] M. P. Schützenberger, “On a theorem of {R}. {J}ungen”, Proc. Amer. Math. Soc., 13 (1962), 885–890 | DOI | MR | Zbl
[31] N. Chomsky, M. P. Schützenberger, “The algebraic theory of context-free languages”, Computer Programming and Formal Systems, Studies in Logic and the Foundations of Mathematics, 35, 1963, 188–161
[32] J. Berstel, C. Reutenauer, Rational series and their languages, Springer-Verlag Publ., Berlin, 1988 | MR | Zbl
[33] P. Linz, An introduction to formal languages and automata, Jones and Bartlett Publ., Burlington, 1977
[34] S. Y. Yan, An introduction to formal languages and machine computation, World Sci. Publ, River Edge, 1988 | MR
[35] D. E. Muller, E. Paul, P. E. Schupp, “Groups, the theory of ends, and context-free languages”, J. Comput. System Sci., 26:3 (1983), 295–310 | DOI | MR | Zbl
[36] W. Lück, “{$L^2$}-torsion and {$3$}-manifolds”, Conf. Proc. Lecture Notes Geom. Topology, III, Int. Press, Cambridge, 1994, 75–107 | MR
[37] O. T. Dasbach, M. N. Lalin, “Mahler measure under variations of the base group”, Forum Math., 21:4 (2009), 621–637 | DOI | MR | Zbl
[38] W. F. Brinkman, T. M. Rice, “Hall effect in the presence of strong spin-disorder scattering”, Physical Review B (Solid State), 4:5 (1971), 1566–1571 | DOI
[39] A. Barelli, R. Fleckinger, T. Ziman , “Localization of two-dimensional electrons with uniform and random fluxes”, Europhysics Letters, 27:7 (1944), 531 | DOI
[40] A. A. Georges, G. B. Kotliar, “Hubbard model in infinite dimensions”, Physical Review B., 45:12 (1992), 6479–6483 | DOI
[41] D. Voiculescu, “Aspects of free probability”, X{IV}th {I}nternational {C}ongress on {M}athematical {P}hysics, World Sci. Publ., Hackensack, 2005, 145–157 | MR
[42] J. Schur, “Der potenzreihen, die im innern des einheitskreises beschrnkt sind”, Journal für die reine und angewandte Mathematik, 1918, no. 148, 122 | MR | Zbl
[43] H. Feshbach, “Unified theory of nuclear reactions”, Annals of Physics (N. Y.), 5:4 (1958), 357 | DOI | MR | Zbl
[44] F. Herman, “A unified theory of nuclear reactions. II”, Annals of Physics, 19 (1962), 287–313 | DOI | MR
[45] H. Feshbach, “The unified theory of nuclear reactions. III. Overlapping resonances”, Ann. Phys. (N. Y.), 43:3 (1967), 410–420 | DOI | MR
[46] U. Fano, “Absorption spectrum of the noble gases near the limit of the arc spectrum”, Nuovo Cimento, 12 (1935), 154–161 | DOI | Zbl
[47] P.-O. Lowdin, “Studies in perturbation theory. IV. Solution of eigenvalue problem by projection operator formalism”, Journal of Mathematical Physics, 3:5 (1962), 969–982 | DOI | MR | Zbl
[48] S. Puntanen, G. P. H. Styan, “Historical introduction: Issai Schur and the early development of the Schur complement”, Numerical Methods and Algorithms, 4 (2005), 1–16 | DOI
[49] M. Krein, “Concerning the resolvents of an {H}ermitian operator with the deficiency-index {$(m,m)$}”, Reports of academy of Sciences of the USSR, 52 (1946), 651–654 | MR | Zbl