Algebraic $G$-functions associated to matrices over a group-ring
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 50-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a square matrix with elements in the group-ring of a group, one can consider the sequence formed by the trace (in the sense of the group-ring) of its powers. We prove that the corresponding generating series is an algebraic $G$-function (in the sense of Siegel) when the group is free of finite rank. Consequently, it follows that the norm of such elements is an exactly computable algebraic number, and their Green function is algebraic. Our proof uses the notion of rational and algebraic power series in non-commuting variables and is an easy application of a theorem of Haiman. Haiman’s theorem uses results of linguistics regarding regular and context-free language. On the other hand, when the group is free abelian of finite rank, then the corresponding generating series is a $G$-function. We ask whether the latter holds for general hyperbolic groups.
Keywords: rational function, algebraic function, holonomic function, $G$-function, generating series, non-commuting variables, hamiltonian, regular language, context-free language, group-ring, free probability, Schur complement method, free group, von Neumann algebra, polynomial Hamiltonian, spectral theory
Mots-clés : moment, resolvant, Hadamard product, norm.
@article{VCHGU_2015_17_a5,
     author = {S. Garoufalidis and J. Bellissard},
     title = {Algebraic $G$-functions associated to matrices over a group-ring},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {50--61},
     year = {2015},
     number = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/}
}
TY  - JOUR
AU  - S. Garoufalidis
AU  - J. Bellissard
TI  - Algebraic $G$-functions associated to matrices over a group-ring
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2015
SP  - 50
EP  - 61
IS  - 17
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/
LA  - en
ID  - VCHGU_2015_17_a5
ER  - 
%0 Journal Article
%A S. Garoufalidis
%A J. Bellissard
%T Algebraic $G$-functions associated to matrices over a group-ring
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2015
%P 50-61
%N 17
%U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/
%G en
%F VCHGU_2015_17_a5
S. Garoufalidis; J. Bellissard. Algebraic $G$-functions associated to matrices over a group-ring. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 50-61. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/

[1] W. Woess, “Context-free languages and random walks on groups”, Discrete Math., 67:1 (1987), 81–87 | DOI | MR | Zbl

[2] W. Woess, Random walks on infinite graphs and groups, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[3] R. Sauer., “Power series over the group ring of a free group and applications to {N}ovikov–{S}hubin invariants”, High-dimensional manifold topology, World Sci. Publ., NJ, River Edge, 2003, 449–468 | DOI | MR | Zbl

[4] D. Voiculescu, “Operations on certain non-commutative operator-valued random variables”, Astérisque, 232, 1995, 243–275 | MR | Zbl

[5] D. Voiculescu, “Free probability and the von {N}eumann algebras of free groups”, Rep. Math. Phys., 55:1 (2005), 127–133 | DOI | MR | Zbl

[6] A. Kazuhiko, “Spectral theory on a free group and algebraic curves”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31:2 (1984), 297–318 | MR | Zbl

[7] P.-A. Cherix, A. Valette, “On spectra of simple random walks on one-relator groups”, Pacific J. Math., 175:2 (1996), 417–438 | DOI | MR | Zbl

[8] S. P. Lalley, “Finite range random walk on free groups and homogeneous trees”, Ann. Probab., 21:4 (1993), 2087–2130 | DOI | MR | Zbl

[9] F. Lehner, “Computing norms of free operators with matrix coefficients”, Amer. J. Math., 121:3 (1999), 453–486 | DOI | MR | Zbl

[10] F. Lehner, “On the computation of spectra in free probability”, J. Funct. Anal., 183:2 (2001), 451–471 | DOI | MR | Zbl

[11] C. Kassel, C. Reutenauer, “Algebraicity of the zeta function associated to a matrix over a free group algebra”, Algebra Number Theory, 8-2 (2014), 497–511 | DOI | MR | Zbl

[12] C. L. Siegel, “Über einige Anwendungen diophantischer Approximationen”, Gesammelte Abhandlungen, v. I, 1966, 209–266 | DOI | MR

[13] P. Deligne, Équations différentielles à points singuliers réguliers, Springer-Verlag Publ., Berlin, 1970 | MR

[14] N. M. Katz, “Nilpotent connections and the monodromy theorem: {A}pplications of a result of {T}urrittin”, Inst. Hautes Études Sci. Publ. Math., 1970, no. 39, 175–232 | DOI | MR | Zbl

[15] B. Malgrange, “Intégrales asymptotiques et monodromie”, Ann. Sci. École Norm. Sup., 7:4 (1974), 405–430 | MR | Zbl

[16] A. Yves, “Séries {G}evrey de type arithmétique. {I}. {T}héorèmes de pureté et de dualité”, Ann. of Math., 151:2 (2000), 705–740 | DOI | MR | Zbl

[17] E. Bombieri., “On {$G$}-functions”, Recent progress in analytic number theory, 2 (1981), 1–67, Academic Press, London | MR

[18] B. Dwork, G. Gerotto, F.-J. Sullivan, An introduction to {$G$}-functions, Princeton University Press, Princeton, 1994 | MR | Zbl

[19] S. Garoufalidis, “{$G$}-functions and multisum versus holonomic sequences”, Adv. Math., 220:6 (2009), 1945–1955 | DOI | MR | Zbl

[20] W. Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications Inc., New York, 1987 | MR | Zbl

[21] O. Cormier, M. F. Singer, B. M. Trager, F. Ulmer, “Linear differential operators for polynomial equations”, J. Symbolic Comput., 34:5 (2002), 355–398 | DOI | MR | Zbl

[22] M. Dwork, A. J. van der Poorten, “The {E}isenstein constant”, Duke Math. J., 65:1 (1992), 23–43 | DOI | MR | Zbl

[23] A. Chamber-Loir, “Théorèmes d'algébricité en géométrie diophantienne”, d'après {J}.-{B}. {B}ost, {Y}. {A}ndré, {D}. {G}. {C}hudnovsky, Astérisque, 282, no. 886, 2002, viii, 175–209 | MR

[24] N. Nilsson, “Some growth and ramification properties of certain integrals on algebraic manifolds”, Ark. Mat., 5 (1965), 463–476 | DOI | MR | Zbl

[25] R. Jungen, “Sur les séries de {T}aylor n'ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence”, Comment. Math. Helv., 3:1 (1931), 266–306 | DOI | MR

[26] O. Costin, S. Garoufalidis, “Resurgence of the {K}ontsevich–{Z}agier series”, Ann. Inst. Fourier (Grenoble), 61:3 (2011), 1225–1258 | DOI | MR | Zbl

[27] J. J. Duistermaat, W. van der Kallen, “Constant terms in powers of a {L}aurent polynomial”, Indag. Math. (N. S.), 9:2 (1998), 221–231 | DOI | MR | Zbl

[28] M. Haiman, “Noncommutative rational power series and algebraic generating functions”, European J. Combin., 14:4 (1933), 335–339 | DOI | MR

[29] E. Borel, “Sur les singularités des séries de {T}aylor”, Bull. Soc. Math. France, 26 (1898), 238–248 | DOI | MR | Zbl

[30] M. P. Schützenberger, “On a theorem of {R}. {J}ungen”, Proc. Amer. Math. Soc., 13 (1962), 885–890 | DOI | MR | Zbl

[31] N. Chomsky, M. P. Schützenberger, “The algebraic theory of context-free languages”, Computer Programming and Formal Systems, Studies in Logic and the Foundations of Mathematics, 35, 1963, 188–161

[32] J. Berstel, C. Reutenauer, Rational series and their languages, Springer-Verlag Publ., Berlin, 1988 | MR | Zbl

[33] P. Linz, An introduction to formal languages and automata, Jones and Bartlett Publ., Burlington, 1977

[34] S. Y. Yan, An introduction to formal languages and machine computation, World Sci. Publ, River Edge, 1988 | MR

[35] D. E. Muller, E. Paul, P. E. Schupp, “Groups, the theory of ends, and context-free languages”, J. Comput. System Sci., 26:3 (1983), 295–310 | DOI | MR | Zbl

[36] W. Lück, “{$L^2$}-torsion and {$3$}-manifolds”, Conf. Proc. Lecture Notes Geom. Topology, III, Int. Press, Cambridge, 1994, 75–107 | MR

[37] O. T. Dasbach, M. N. Lalin, “Mahler measure under variations of the base group”, Forum Math., 21:4 (2009), 621–637 | DOI | MR | Zbl

[38] W. F. Brinkman, T. M. Rice, “Hall effect in the presence of strong spin-disorder scattering”, Physical Review B (Solid State), 4:5 (1971), 1566–1571 | DOI

[39] A. Barelli, R. Fleckinger, T. Ziman , “Localization of two-dimensional electrons with uniform and random fluxes”, Europhysics Letters, 27:7 (1944), 531 | DOI

[40] A. A. Georges, G. B. Kotliar, “Hubbard model in infinite dimensions”, Physical Review B., 45:12 (1992), 6479–6483 | DOI

[41] D. Voiculescu, “Aspects of free probability”, X{IV}th {I}nternational {C}ongress on {M}athematical {P}hysics, World Sci. Publ., Hackensack, 2005, 145–157 | MR

[42] J. Schur, “Der potenzreihen, die im innern des einheitskreises beschrnkt sind”, Journal für die reine und angewandte Mathematik, 1918, no. 148, 122 | MR | Zbl

[43] H. Feshbach, “Unified theory of nuclear reactions”, Annals of Physics (N. Y.), 5:4 (1958), 357 | DOI | MR | Zbl

[44] F. Herman, “A unified theory of nuclear reactions. II”, Annals of Physics, 19 (1962), 287–313 | DOI | MR

[45] H. Feshbach, “The unified theory of nuclear reactions. III. Overlapping resonances”, Ann. Phys. (N. Y.), 43:3 (1967), 410–420 | DOI | MR

[46] U. Fano, “Absorption spectrum of the noble gases near the limit of the arc spectrum”, Nuovo Cimento, 12 (1935), 154–161 | DOI | Zbl

[47] P.-O. Lowdin, “Studies in perturbation theory. IV. Solution of eigenvalue problem by projection operator formalism”, Journal of Mathematical Physics, 3:5 (1962), 969–982 | DOI | MR | Zbl

[48] S. Puntanen, G. P. H. Styan, “Historical introduction: Issai Schur and the early development of the Schur complement”, Numerical Methods and Algorithms, 4 (2005), 1–16 | DOI

[49] M. Krein, “Concerning the resolvents of an {H}ermitian operator with the deficiency-index {$(m,m)$}”, Reports of academy of Sciences of the USSR, 52 (1946), 651–654 | MR | Zbl