Algebraic $G$-functions associated to matrices  over a group-ring
    
    
  
  
  
      
      
      
        
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 50-61
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Given a square matrix with elements in the group-ring of a group, one can consider the sequence formed by the trace (in the sense of the group-ring) of its powers. We prove that the corresponding generating series is an algebraic $G$-function (in the sense of Siegel) when the group is free of finite rank. Consequently, it follows that the norm of such elements is an exactly computable algebraic number, and their Green function is algebraic. Our proof uses the notion of rational and algebraic power series in non-commuting variables and is an easy application of a theorem of Haiman. Haiman’s theorem uses results of linguistics regarding regular and context-free language. On the other hand, when the group is free abelian of finite rank, then the corresponding generating series is a $G$-function. We ask whether the latter holds for general hyperbolic groups.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
rational function, algebraic function, holonomic function, $G$-function, generating series, non-commuting variables, hamiltonian, regular language, context-free language, group-ring, free probability, Schur complement method, free group, von Neumann algebra, polynomial Hamiltonian, spectral theory
Mots-clés : moment, resolvant, Hadamard product, norm.
                    
                  
                
                
                Mots-clés : moment, resolvant, Hadamard product, norm.
@article{VCHGU_2015_17_a5,
     author = {S. Garoufalidis and J. Bellissard},
     title = {Algebraic $G$-functions associated to matrices  over a group-ring},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {50--61},
     publisher = {mathdoc},
     number = {17},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/}
}
                      
                      
                    TY - JOUR AU - S. Garoufalidis AU - J. Bellissard TI - Algebraic $G$-functions associated to matrices over a group-ring JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2015 SP - 50 EP - 61 IS - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/ LA - en ID - VCHGU_2015_17_a5 ER -
%0 Journal Article %A S. Garoufalidis %A J. Bellissard %T Algebraic $G$-functions associated to matrices over a group-ring %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2015 %P 50-61 %N 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/ %G en %F VCHGU_2015_17_a5
S. Garoufalidis; J. Bellissard. Algebraic $G$-functions associated to matrices over a group-ring. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 50-61. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a5/
