Links with trivial Alexander module and nontrivial Milnor invariants
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 41-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cochran constructed many links with Alexander module that of the unlink and some nonvanishing Milnor invariants, using as input commutators in a free group and as an invariant the longitudes of the links. We present a different and conjecturally complete construction, that uses elementary properties of clasper surgery, and a different invariant, the tree-part of the LMO invariant. Our method also constructs links with trivial higher Alexander modules and nontrivial Milnor invariants.
Keywords: Alexander module, claspers, Aarhus integral
Mots-clés : Milnor invariants, LMO invariant.
@article{VCHGU_2015_17_a4,
     author = {S. Garoufalidis},
     title = {Links with trivial {Alexander} module and nontrivial {Milnor} invariants},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {41--49},
     year = {2015},
     number = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a4/}
}
TY  - JOUR
AU  - S. Garoufalidis
TI  - Links with trivial Alexander module and nontrivial Milnor invariants
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2015
SP  - 41
EP  - 49
IS  - 17
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a4/
LA  - en
ID  - VCHGU_2015_17_a4
ER  - 
%0 Journal Article
%A S. Garoufalidis
%T Links with trivial Alexander module and nontrivial Milnor invariants
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2015
%P 41-49
%N 17
%U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a4/
%G en
%F VCHGU_2015_17_a4
S. Garoufalidis. Links with trivial Alexander module and nontrivial Milnor invariants. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 41-49. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a4/

[1] J. Milnor, “Link groups”, Ann. of Math., 59:2 (1954), 177–195 | DOI | MR | Zbl

[2] J. P. Levine, “Localization of link modules”, Amer. Math. Soc. Contemporary Math., 20 (1983), 213–229 | DOI | MR | Zbl

[3] S. Garoufalidis, J. P. Levine, “Analytic invariants of boundary links”, J. Knot Theory Ramifications, 11:3 (2002), 283–293 | DOI | MR | Zbl

[4] L. Traldi, “Milnor's invariants and the completions of link modules”, Trans. Amer. Math. Soc., 284:1 (1984), 401–424 | MR | Zbl

[5] N. Habegger, G. Masbaum, “The {K}ontsevich integral and {M}ilnor's invariants”, Topology, 39:6 (2000), 1253–1289 | DOI | MR | Zbl

[6] T. D. Cochran, K. E. Orr, P. Teichner, “Knot concordance, {W}hitney towers and {$L^2$}-signatures”, Ann. of Math., 157:2 (2003), 433–519 | DOI | MR | Zbl

[7] T. D. Cochran, “Noncommutative knot theory”, Algebr. Geom. Topol., 4 (2004), 347–398 | DOI | MR | Zbl

[8] M. N. Gusarov, “Variations of knotted graphs. {T}he geometric technique of {$n$}-equivalence”, St. Petersburg Math J., 12:4 (2000), 79–125 | MR

[9] K. Habiro, “Claspers and finite type invariants of links”, Geom. Topol., 4 (2000), 1–83 | DOI | MR | Zbl

[10] S. Garoufalidis, M. Gusarov, M. Polyak, “Calculus of clovers and finite type invariants of 3-manifolds”, Geom. Topol., 5 (2001), 75–108 | DOI | MR | Zbl

[11] S. Garoufalidis, L. Rozansky, “The loop expansion of the {K}ontsevich integral, the null-move and {$S$}-equivalence”, Topology, 43:5 (2004), 1183–1210 | DOI | MR | Zbl

[12] S. Garoufalidis, J. P. Levine, “Homology surgery and invariants of 3-manifolds”, Geom. Topol., 5 (2001), 551–578 | DOI | MR | Zbl

[13] S. Garoufalidis, A. Kricker, “A rational noncommutative invariant of boundary links”, Geom. Topol., 8 (2004), 115–204 | DOI | MR | Zbl

[14] S. Garoufalidis, J. P. Levine, “Concordance and 1-loop clovers”, Algebr. Geom. Topol., 1 (2001), 687–697 | DOI | MR | Zbl

[15] J. Conant, P. Teichner, “Grope cobordism of classical knots”, Topology, 43:1 (2004), 119–156 | DOI | MR | Zbl

[16] D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. P. Thurston, “The Aarhus integral of rational homology 3-spheres. {I}. {A} highly non trivial flat connection on {$S^3$}”, Selecta Math. (N.S.), 8:3 (2002), 315–339 | DOI | MR | Zbl

[17] D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. P. Thurston, “The Aarhus integral of rational homology 3-spheres. {II}. {I}nvariance and universality”, Selecta Math. (N.S.), 8:3 (2002), 341–371 | DOI | MR | Zbl

[18] D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. P. Thurston, “The Aarhus integral of rational homology 3-spheres. {III}. {R}elation with the {L}e-{M}urakami-{O}htsuki invariant”, Selecta Math. (N.S.), 10:3 (2004), 305–324 | DOI | MR | Zbl