Mots-clés : $q$-binomial formula
@article{VCHGU_2015_17_a3,
author = {M. De Renzi},
title = {Quantum invariants of 3-manifolds arising from non-semisimple categories},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {26--40},
year = {2015},
number = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/}
}
TY - JOUR AU - M. De Renzi TI - Quantum invariants of 3-manifolds arising from non-semisimple categories JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2015 SP - 26 EP - 40 IS - 17 UR - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/ LA - en ID - VCHGU_2015_17_a3 ER -
%0 Journal Article %A M. De Renzi %T Quantum invariants of 3-manifolds arising from non-semisimple categories %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2015 %P 26-40 %N 17 %U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/ %G en %F VCHGU_2015_17_a3
M. De Renzi. Quantum invariants of 3-manifolds arising from non-semisimple categories. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 26-40. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/
[1] F. Costantino, N. Geer, B. Patureau-Mirand, “Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories”, J. of Topology, 7:4 (2014), 1005–1053 | DOI | MR | Zbl
[2] C. Blanchet, F. Costantino, N. Geer, B. Patureau-Mirand, Non-semisimple TQFTs, Reidemeister torsion and Kashaev's invariants, arXiv: 1404.7289 | MR
[3] V. Turaev, Quantum Invariants of Knots and 3-Manifolds, Walter de Gruyter Publ., Berlin, 2010, 592 pp. | MR | Zbl
[4] F. Costantino, N. Geer, B. Patureau-Mirand, Some remarks on the unrolled quantum group of $\mathfrak{sl}(2)$, arXiv: arXiv:1406.0410 | MR
[5] J. Murakami, “The multi-variable Alexander polynomial and a one-parameter family of representations of $U_q(\mathfrak{sl}(2,\mathbb C))$ at $q^2 = -1$”, Quantum Groups, Proceedings of Workshops held in the Euler International Mathematical Institute (Leningrad, Fall, 1990), Springer, 1992
[6] O. Viro, “Quantum relatives of the Alexander polynomial”, St. Petersburg Math. J., 18:3 (2007), 391–457 | DOI | MR | Zbl
[7] F. Costantino, J. Murakami, “On ${\mathrm{SL}}(2,\mathbb C)$ quantum $6j$-symbols and its relation to thehyperbolic volume”, Quantum Topology, 4:3 (2013), 303–351 | DOI | MR | Zbl
[8] V. Turaev, Torsions of 3-dimensional manifolds, Springer Publ., Berlin, 2002, 196 pp. | MR
[9] F. Deloup, G. Massuyeau, “Quadratic functions and complex spin structures on three-manifolds”, Topology, 44:3 (2005), 509–555 | DOI | MR | Zbl
[10] N. Geer, B. Patureau-Mirand, V. Turaev, “Modified Quantum dimensions and re-normalized link invariants”, Compositio Mathematica, 145:1 (2009), 196–212 | DOI | MR | Zbl
[11] T. Ohtsuki, Quantum Invariants, a Study of Knots, 3-Manifolds and Their Sets, World Scientific, 2002, 508 pp. | MR | Zbl