Quantum invariants of 3-manifolds arising from non-semisimple categories
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 26-40

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey article covers some of the results contained in the papers by Costantino, Geer and Patureau and by Blanchet, Costantino, Geer and Patureau. In the first one the authors construct two families of Reshetikhin–Turaev-type invariants of 3-manifolds, ${\mathrm N}_r$ and ${\mathrm N}^0_r$, using non-semisimple categories of representations of a quantum version of ${\mathfrak{sl}_2}$ at a $2r$-th root of unity with $r \geq 2$. The secondary invariants ${\mathrm N}^0_r$ conjecturally extend the original Reshetikhin–Turaev quantum ${\mathfrak{sl}_2}$ invariants. The authors also provide a machinery to produce invariants out of more general ribbon categories which can lack the semisimplicity condition. In the second paper a renormalized version of ${\mathrm N}_r$ for $r \neq 0 \; (\mathrm{mod} \; 4)$ is extended to a TQFT, and connections with classical invariants such as the Alexander polynomial and the Reidemeister torsion are found. In particular, it is shown that the use of richer categories pays off, as these non-semisimple invariants are strictly finer than the original semisimple ones: indeed they can be used to recover the classification of lens spaces, which Reshetikhin–Turaev invariants could not always distinguish.
Keywords: dilogarithm identity.
Mots-clés : $q$-binomial formula
@article{VCHGU_2015_17_a3,
     author = {M. De Renzi},
     title = {Quantum invariants of 3-manifolds arising from non-semisimple categories},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {26--40},
     publisher = {mathdoc},
     number = {17},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/}
}
TY  - JOUR
AU  - M. De Renzi
TI  - Quantum invariants of 3-manifolds arising from non-semisimple categories
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2015
SP  - 26
EP  - 40
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/
LA  - en
ID  - VCHGU_2015_17_a3
ER  - 
%0 Journal Article
%A M. De Renzi
%T Quantum invariants of 3-manifolds arising from non-semisimple categories
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2015
%P 26-40
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/
%G en
%F VCHGU_2015_17_a3
M. De Renzi. Quantum invariants of 3-manifolds arising from non-semisimple categories. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 26-40. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/