Quantum invariants of 3-manifolds arising from non-semisimple categories
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 26-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey article covers some of the results contained in the papers by Costantino, Geer and Patureau and by Blanchet, Costantino, Geer and Patureau. In the first one the authors construct two families of Reshetikhin–Turaev-type invariants of 3-manifolds, ${\mathrm N}_r$ and ${\mathrm N}^0_r$, using non-semisimple categories of representations of a quantum version of ${\mathfrak{sl}_2}$ at a $2r$-th root of unity with $r \geq 2$. The secondary invariants ${\mathrm N}^0_r$ conjecturally extend the original Reshetikhin–Turaev quantum ${\mathfrak{sl}_2}$ invariants. The authors also provide a machinery to produce invariants out of more general ribbon categories which can lack the semisimplicity condition. In the second paper a renormalized version of ${\mathrm N}_r$ for $r \neq 0 \; (\mathrm{mod} \; 4)$ is extended to a TQFT, and connections with classical invariants such as the Alexander polynomial and the Reidemeister torsion are found. In particular, it is shown that the use of richer categories pays off, as these non-semisimple invariants are strictly finer than the original semisimple ones: indeed they can be used to recover the classification of lens spaces, which Reshetikhin–Turaev invariants could not always distinguish.
Keywords: dilogarithm identity.
Mots-clés : $q$-binomial formula
@article{VCHGU_2015_17_a3,
     author = {M. De Renzi},
     title = {Quantum invariants of 3-manifolds arising from non-semisimple categories},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {26--40},
     year = {2015},
     number = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/}
}
TY  - JOUR
AU  - M. De Renzi
TI  - Quantum invariants of 3-manifolds arising from non-semisimple categories
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2015
SP  - 26
EP  - 40
IS  - 17
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/
LA  - en
ID  - VCHGU_2015_17_a3
ER  - 
%0 Journal Article
%A M. De Renzi
%T Quantum invariants of 3-manifolds arising from non-semisimple categories
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2015
%P 26-40
%N 17
%U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/
%G en
%F VCHGU_2015_17_a3
M. De Renzi. Quantum invariants of 3-manifolds arising from non-semisimple categories. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 26-40. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a3/

[1] F. Costantino, N. Geer, B. Patureau-Mirand, “Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories”, J. of Topology, 7:4 (2014), 1005–1053 | DOI | MR | Zbl

[2] C. Blanchet, F. Costantino, N. Geer, B. Patureau-Mirand, Non-semisimple TQFTs, Reidemeister torsion and Kashaev's invariants, arXiv: 1404.7289 | MR

[3] V. Turaev, Quantum Invariants of Knots and 3-Manifolds, Walter de Gruyter Publ., Berlin, 2010, 592 pp. | MR | Zbl

[4] F. Costantino, N. Geer, B. Patureau-Mirand, Some remarks on the unrolled quantum group of $\mathfrak{sl}(2)$, arXiv: arXiv:1406.0410 | MR

[5] J. Murakami, “The multi-variable Alexander polynomial and a one-parameter family of representations of $U_q(\mathfrak{sl}(2,\mathbb C))$ at $q^2 = -1$”, Quantum Groups, Proceedings of Workshops held in the Euler International Mathematical Institute (Leningrad, Fall, 1990), Springer, 1992

[6] O. Viro, “Quantum relatives of the Alexander polynomial”, St. Petersburg Math. J., 18:3 (2007), 391–457 | DOI | MR | Zbl

[7] F. Costantino, J. Murakami, “On ${\mathrm{SL}}(2,\mathbb C)$ quantum $6j$-symbols and its relation to thehyperbolic volume”, Quantum Topology, 4:3 (2013), 303–351 | DOI | MR | Zbl

[8] V. Turaev, Torsions of 3-dimensional manifolds, Springer Publ., Berlin, 2002, 196 pp. | MR

[9] F. Deloup, G. Massuyeau, “Quadratic functions and complex spin structures on three-manifolds”, Topology, 44:3 (2005), 509–555 | DOI | MR | Zbl

[10] N. Geer, B. Patureau-Mirand, V. Turaev, “Modified Quantum dimensions and re-normalized link invariants”, Compositio Mathematica, 145:1 (2009), 196–212 | DOI | MR | Zbl

[11] T. Ohtsuki, Quantum Invariants, a Study of Knots, 3-Manifolds and Their Sets, World Scientific, 2002, 508 pp. | MR | Zbl