Crystal criterion and antipodal Delaunay sets
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 6-17
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a discrete set of points repeatability local configurations under certain conditions implies the so-called «global order», which includes the presence of a plurality of crystallographic symmetry group. It is also proved that the set of Delaunay, in which all $2R$-clusters are antipodal, that is centrally symmetric, is itself a centrally symmetric with respect to each of its points. Moreover, if in addition to this cluster are identical, then the set is correct, i. e. its symmetry group acts transitively.
This article based on a lecture delivered at the International Conference «Quantum topology» (5-17 July 2014), organized by the Laboratory of Quantum Topology of Chelyabinsk State University.
Mots-clés :
Delaunay set
Keywords: cluster, the right system, crystallographic group.
Keywords: cluster, the right system, crystallographic group.
@article{VCHGU_2015_17_a0,
author = {N. P. Dolbilin},
title = {Crystal criterion and antipodal {Delaunay} sets},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {6--17},
publisher = {mathdoc},
number = {17},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a0/}
}
TY - JOUR AU - N. P. Dolbilin TI - Crystal criterion and antipodal Delaunay sets JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2015 SP - 6 EP - 17 IS - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a0/ LA - ru ID - VCHGU_2015_17_a0 ER -
N. P. Dolbilin. Crystal criterion and antipodal Delaunay sets. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 6-17. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a0/