Crystal criterion and antipodal Delaunay sets
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 6-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a discrete set of points repeatability local configurations under certain conditions implies the so-called «global order», which includes the presence of a plurality of crystallographic symmetry group. It is also proved that the set of Delaunay, in which all $2R$-clusters are antipodal, that is centrally symmetric, is itself a centrally symmetric with respect to each of its points. Moreover, if in addition to this cluster are identical, then the set is correct, i. e. its symmetry group acts transitively. This article based on a lecture delivered at the International Conference «Quantum topology» (5-17 July 2014), organized by the Laboratory of Quantum Topology of Chelyabinsk State University.
Mots-clés : Delaunay set
Keywords: cluster, the right system, crystallographic group.
@article{VCHGU_2015_17_a0,
     author = {N. P. Dolbilin},
     title = {Crystal criterion and antipodal {Delaunay} sets},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {6--17},
     year = {2015},
     number = {17},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a0/}
}
TY  - JOUR
AU  - N. P. Dolbilin
TI  - Crystal criterion and antipodal Delaunay sets
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2015
SP  - 6
EP  - 17
IS  - 17
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a0/
LA  - ru
ID  - VCHGU_2015_17_a0
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%T Crystal criterion and antipodal Delaunay sets
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2015
%P 6-17
%N 17
%U http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a0/
%G ru
%F VCHGU_2015_17_a0
N. P. Dolbilin. Crystal criterion and antipodal Delaunay sets. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 17 (2015), pp. 6-17. http://geodesic.mathdoc.fr/item/VCHGU_2015_17_a0/

[1] B. N. Delone , N. P. Dolbilin, M. I. Shtogrin, R. V. Galiulin R.V., “Local criterion of correctness of system of points”, Reports of Academy of Sciences of the USSR, 227:1 (1976), 19-21 (In Russ.) | MR | Zbl

[2] B. Delaunay, “Sur la sphere vide. A la memoire de Georges Voronoi”, News of Academy of Sciences of the USSR, 1934, no. 6, 793–800

[3] B. N. Delone, “Geometry of positive square forms”, Achievements of mathematical sciences, 1937, no. 3, 16–62 (In Russ.)

[4] E. S. Fedorov, I began doctrines about figures, AN SSSR Publ., Moscow–Leningrad, 1953, 410 pp. (In Russ.) | MR

[5] A. Schoefliess, Kristallsysteme und Kristallstruktur, Leipzig, 1981

[6] Gilbert's problems: collection, Nauka Publ., Moscow, 1969, 240 pp. (In Russ.)

[7] L. Bieberbach, “Ueber die Bewegungsgruppen des $n$-dimensionalen Euklidischen Räumes”, Math. Ann., 70 (1911), 207–336 ; Math. Ann., 72 (1912), 400–412 | DOI | MR | DOI | MR | Zbl

[8] M. Shtogrin, “About restriction of an order of an axis of a spider in locally correct system Delon”, Geometry, Topology, Algebra and Number Theory, Applications, Abstracts of the International Conference, dedicated to the 120-th anniversary of Boris Nikolaevich Delone (1890-1980) (Moscow, August 16–20, 2010), Steklov Mathematical Institute, Moscow, 2010, 168–169 (In Russ.)

[9] N. P. Dolbilin, M. I. Shtogrin, “A local criterion for a crystal structure”, Abstracts of the 9th All-Union Geometrical Conference, Kishinev, 1988, 99