Sectorial normalization of semihyperbolic maps
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 94-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are considered germs of semihyperbolic maps, i. e. two-dimensional holomorfic maps such that one of its multiplicator is parabolic and another one is hyperbolic. Theorem on sectorial normalization for the simplest semihyperbolic germs is proved.
Keywords: analytic classification, functional invariants.
@article{VCHGU_2013_16_a9,
     author = {S. M. Voronin and P. A. Fomina},
     title = {Sectorial normalization of semihyperbolic maps},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {94--113},
     year = {2013},
     number = {16},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a9/}
}
TY  - JOUR
AU  - S. M. Voronin
AU  - P. A. Fomina
TI  - Sectorial normalization of semihyperbolic maps
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2013
SP  - 94
EP  - 113
IS  - 16
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a9/
LA  - ru
ID  - VCHGU_2013_16_a9
ER  - 
%0 Journal Article
%A S. M. Voronin
%A P. A. Fomina
%T Sectorial normalization of semihyperbolic maps
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2013
%P 94-113
%N 16
%U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a9/
%G ru
%F VCHGU_2013_16_a9
S. M. Voronin; P. A. Fomina. Sectorial normalization of semihyperbolic maps. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 94-113. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a9/

[1] H. Poincare, “Memoire sur les courbes definies par une equation differentielle I”, J. Math. Pures et Appl., 7 (1881), 375–422

[2] H. Poincare, “Memoire sur les courbes definies par une equation differentielle I”, J. Math. Pures et Appl., 8 (1882), 251–286

[3] H. Poincare, “Memoire sur les courbes definies par une equation differentielle I”, J. Math. Pures et Appl., 1 (1885), 167–244

[4] H. Poincare, “Memoire sur les courbes definies par une equation differentielle I”, J. Math. Pures et Appl., 2 (1886), 151–217

[5] H. Poincare, “Sur les problem des trois corps et les equations de la dinamique”, Acta Math., XIII (1890), 1–270

[6] C. L. Siegel, Vorlesungen uber Himmelsmechanik, Springer-Verland, Berlin – Gottingen – Heidelberg, 1957 | MR

[7] A. D. Bryuno, “Analiticheskaya forma differentsialnyx uravnenii”, Tr. Mosk. mat. ob-va, 25 (1971), 119–262 | Zbl

[8] A. D. Bryuno, “Analiticheskaya forma differentsialnyx uravnenii”, Tr. Mosk. mat. ob-va, 26 (1972), 199–239 | Zbl

[9] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[10] J. C. Yoccos, “Linearisation des germes de diffeomorphismes holomorphes de $({\mathbb C}, 0)$”, C. R. Acad. Sci. Paris Ser. I Math., 306:1 (1988), 55–58 | MR

[11] C. M. Voronin, “Analiticheskaya klassifikatsiya rostkov konformnykh otobrazhenii $(\mathbb{C}, 0) \to (\mathbb{C}, 0)$ s tozhdestvennoi lineinoi chastyu”, Funkts. analiz i ego prilozheniya, 15:1 (1981), 1–17 | Zbl

[12] J. Ecalle, Sur les fonctions resurgentes, Publ. Math. d'Orsay, Orsay, 1981 | MR

[13] J. Martinet, J. P. Ramis, “Probléme de modules pour des équations différentielles non linéaires du premier ordre”, Inst. Hautes {'E}tudes Sci. Publ. Math., 1982, no. 55, 63–164 | DOI | MR | Zbl

[14] J. Martinet, J. P. Ramis, “Classification analytique des équations différentielles non linéaires resonnantes du premier ordre”, Ann. Sci. École norm. supér, 16:4 (1983), 571–621 | DOI | MR | Zbl

[15] B. Malgrange, “Travoux d'Ecalle et de Martinet-Ramis sur les systemes dinamique”, Asterisque, 1982, no. 582, 59–73 | MR | Zbl

[16] C. M. Voronin, Yu. I. Mescheryakova, “Analiticheskaya klassifikatsiya tipichnykh vyrozhdennykh elementarnykh osobykh tochek rostkov golomorfnykh vektornykh polei na kompleksnoi ploskosti”, Izv. vuzov. Matematika, 2005, no. 1, 13–16

[17] C. M. Voronin, Yu. I. Mescheryakova, “Analiticheskaya klassifikatsiya sedlouzlov”, Tr. Mosk. mat. ob-va, 66 (2005), 93–113 | Zbl

[18] C. M. Voronin, “Analiticheskaya klassifikatsiya par involyutsii i ee prilozheniya”, Funkts. analiz i ego prilozheniya, 16:2 (1982), 21–29 | MR | Zbl

[19] C. M. Voronin, L. Ortis-Bobadilla, E. Rosales-Gonsales, “Problema Toma v zadache ob orbitalnoi analiticheskoi klassifikatsii vyrozhdennykh osobykh tochek golomorfnykh vektornykh polei na ploskosti”, Dokl. Akad. nauk, 434:4 (2010), 443–446 | Zbl

[20] A. A. Scherbakov, “Topologicheskaya klassifikatsiya rostkov konformnykh otobrazhenii s tozhdestvennoi lineinoi chastyu”, Vestn. Mosk. gos. un-ta. Ser. 1. Matematika. Mekhanika, 37:3 (1982), 52–57

[21] T. Ueda, “Local structure of analytic transformations of two complex variables”, Int. J. Math. Kyoto Univ., 26:2 (1986), 233–261 | DOI | MR | Zbl

[22] T. Ueda, “Local structure of analytic transformations of two complex variables”, Int. J. Math. Kyoto Univ., 31:3 (1991), 695–711 | DOI | MR | Zbl