Two sided estimation of continuity module of an integral furl type operator
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 88-93
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of determining of the phonon spectrum of the crystal from its thermal capacity is described in this article.The integral equalization, which determine of energy spectrum Bose system with its thermal capacity, is reduced to equalization as furl.On the basis of traced investigation, two-sided estimation of module of continuity for the inverse of the integral operation as furl was investigate.
Keywords:
regularization, module of continuity, estimate of error, ill-posed problem.
@article{VCHGU_2013_16_a8,
author = {V. P. Tanana and A. A. Erygina},
title = {Two sided estimation of continuity module of an integral furl type operator},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {88--93},
year = {2013},
number = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a8/}
}
TY - JOUR AU - V. P. Tanana AU - A. A. Erygina TI - Two sided estimation of continuity module of an integral furl type operator JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2013 SP - 88 EP - 93 IS - 16 UR - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a8/ LA - ru ID - VCHGU_2013_16_a8 ER -
%0 Journal Article %A V. P. Tanana %A A. A. Erygina %T Two sided estimation of continuity module of an integral furl type operator %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2013 %P 88-93 %N 16 %U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a8/ %G ru %F VCHGU_2013_16_a8
V. P. Tanana; A. A. Erygina. Two sided estimation of continuity module of an integral furl type operator. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 88-93. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a8/
[1] V. K. Ivanov, T. I. Korolyuk, “Ob otsenke pogreshnosti pri reshenii lineinykh nekorrektno postavlennykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 9:1 (1969), 30–41 | Zbl
[2] I. M. Lifshits, “Ob opredelenii energeticheskogo spektra boze-sistemy po ee teploemkosti”, ZhETF, 26:5 (1954), 551–556 | Zbl
[3] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, v. 2, Nauka, M., 1978, 468 pp.
[4] V. P. Tanana, A. I. Sidikova, Optimalnye metody resheniya nekorrektno postavlennykh zadach, Yuzh.-Ural. gos. un-t, Chelyabinsk, 2012, 162 pp. | MR