Approximation of nonsmooth optimal result in one class of velocity problems
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 71-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One class of velocity problems with circle motion vectogramme is studied. The target set is nonsmooth and nonconvex in common case in these problems. The relation between their optimal result function and generalized solution of connected boundary condition problems of Hamilton-Jacobi and eikonal PDE is shown. The singular curves (which are called bisector) of the target set are constructed. An example of one velocity problems is calculated. Programm complex “SharpEye” used for visualization of optimal result function approximation.
Keywords: velocity problem, singular curve, boundary condition problem, optimal result function.
@article{VCHGU_2013_16_a6,
     author = {A. A. Uspenskii and P. D. Lebedev and P. A. Vasev},
     title = {Approximation of nonsmooth optimal result in one class of velocity problems},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {71--77},
     year = {2013},
     number = {16},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a6/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
AU  - P. A. Vasev
TI  - Approximation of nonsmooth optimal result in one class of velocity problems
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2013
SP  - 71
EP  - 77
IS  - 16
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a6/
LA  - ru
ID  - VCHGU_2013_16_a6
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%A P. A. Vasev
%T Approximation of nonsmooth optimal result in one class of velocity problems
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2013
%P 71-77
%N 16
%U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a6/
%G ru
%F VCHGU_2013_16_a6
A. A. Uspenskii; P. D. Lebedev; P. A. Vasev. Approximation of nonsmooth optimal result in one class of velocity problems. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 71-77. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a6/

[1] N. N. Krasovskii, “Igrovye zadachi dinamiki. I”, Izv. AN SSSR. Tekhn. kibernetika, 1969, no. 5, 3–12

[2] A. I. Subbotin, Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyuter. tekhnologii, M.–Izhevsk, 2003, 336 pp.

[3] A. A. Uspenskii, P. D. Lebedev, “Analiticheskoe i chislennoe konstruirovanie funktsii optimalnogo rezultata dlya odnogo klassa zadach bystrodeistviya”, Prikladnaya matematika i informatika, 2007, no. 27, 65–79

[4] P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Postroenie minimaksnogo resheniya uravnenii tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 182–191 | Zbl

[5] S. A. Brykalov, P. D. Lebedev, A. A. Uspenskii [et al.], “Symmetry Sets in Construction of a Minimax Solution for a Bellman-Isaacs Equation”, IFAC PapersOnLine Identifier: 10.3182/20110828-6-IT-1002.00744, Proceedings of the 18th IFAC World Congress, Part I, v. 18, eds. S. Bittanti, A. Cenedese, S. Zampieri, Milan, 2011 http://www.ifac-papersonline.net/Detailed/51871.html

[6] G. G. Slyusarev, Geometricheskaya optika, Izd-vo AN SSSR, M., 1946, 332 pp. | MR

[7] C. N. Kruzhkov, “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I”, Mat. sb., 98:3 (1974), 450–493

[8] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp. | MR

[9] V. I. Arnold, “Invarianty i perestroiki frontov na ploskosti”, Tr. Mat. in-ta im. V. A. Steklova, 209, 1995, 14–64 | MR | Zbl

[10] P. K. Rashevskii, Kurs differentsialnoi geometrii, Editorial URSS, M., 2003, 432 pp. | MR

[11] K. Leikhtveis, Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR

[12] Dzh. Brus, P. Dzhiblin, Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR

[13] P. D. Lebedev, “Vychislenie mery nevypuklosti ploskikh mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 84–94

[14] P. D. Lebedev, A. A. Uspenskii, “Geometriya i asimptotika volnovykh frontov”, Izv. vuzov. Matematika, 2008, no. 3(550), 27–37 | Zbl

[15] R. Aizeks, Differentsialnye igry, Mir, M., 1967, 479 pp. | MR

[16] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[17] A. A. Uspenskii, P. D. Lebedev, “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 82–99

[18] A. A. Uspenskii, P. D. Lebedev, “Usloviya gladkosti mnozhestva simmetrii minimaksnogo resheniya odnogo uravneniya Aizeksa–Bellmana”, sb. nauch. tr. Mosk. gos. un-ta, Problemy dinamicheskogo upravleniya, 3, MAKS Press, 2008, 231–245

[19] A. A. Uspenskii, P. D. Lebedev, “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | Zbl

[20] A. A. Uspenskii, P. D. Lebedev, “Protsedury vychisleniya mery nevypuklosti ploskogo mnozhestva”, Zhurn. vychislit. matematiki i mat. fiziki, 49:3 (2009), 431–440 | MR | Zbl

[21] P. D. Lebedev, A. A. Uspenskii, “Algoritmy postroeniya singulyarnykh mnozhestv dlya odnogo klassa zadach bystrodeistviya”, Vestn. Udmurt. un-ta. Ser. Matematika, mekhanika, kompyuternye nauki, 2010, no. 3, 30–41

[22] A. A. Uspenskii, P. D. Lebedev, “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 171–186

[23] P. A. Vasëv, S. S. Kumkov, E. Yu. Shmakov, “Konstruktor spetsializirovannykh sistem vizualizatsii”, Nauch. vizualizatsiya, 4:2 (2012), 64–77