Stable bridge for a decomposition differential game with breaches in dynamics
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 54-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Maximal stable bridge is constructed for a differential game with breaches in dynamics. Control values of a first player belong to a polyhedron with the additivity condition.
Keywords: differential game, stable bridge, polyhedral set of control.
@article{VCHGU_2013_16_a4,
     author = {S. A. Nikitina},
     title = {Stable bridge for a decomposition differential game with breaches in dynamics},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {54--59},
     year = {2013},
     number = {16},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a4/}
}
TY  - JOUR
AU  - S. A. Nikitina
TI  - Stable bridge for a decomposition differential game with breaches in dynamics
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2013
SP  - 54
EP  - 59
IS  - 16
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a4/
LA  - ru
ID  - VCHGU_2013_16_a4
ER  - 
%0 Journal Article
%A S. A. Nikitina
%T Stable bridge for a decomposition differential game with breaches in dynamics
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2013
%P 54-59
%N 16
%U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a4/
%G ru
%F VCHGU_2013_16_a4
S. A. Nikitina. Stable bridge for a decomposition differential game with breaches in dynamics. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 54-59. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a4/

[1] N. N. Krasovskii, A. N. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] S. A. Nikitina, V. I. Ukhobotov, “Stabilnyi most dlya odnoi dekompozitsionnoi differentsialnoi igry”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2003, no. 7, 99–107

[3] M. S. Nikolskii, “Ob odnoi zadache upravleniya s narusheniyami v dinamike”, Tr. Mat. in-ta AN SSSR, 185, 1988, 181–186 | MR

[4] V. I. Ukhobotov, “K voprosu o vychislenii tseny igry”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 2001, no. 1(21), 93–104

[5] R. Aizeks, Differentsialnye igry, Mir, M., 1984, 479 pp. | MR

[6] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 319 pp. | MR

[7] S. A. Nikitina, V. I. Ukhobotov, “Svoistva mnogogrannikov, additivno zavisyaschikh ot pravykh chastei”, Matematika. Mekhanika. Informatika, materialy vseros. nauch. konf. (19–22 sent. 2006 g., Chelyabinsk), ed. S. V. Matveev, Chelyab. gos. un-, Chelyabinsk, 2007, 133–138

[8] V. I. Ukhobotov, O. V. Titov, “Modelirovanie garantirovannogo upravleniya s mnogogrannoi oblastyu znachenii”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2002, no. 6, 155–164 | MR | Zbl