On the approaches to optimization of discontinious functions based on the approximate gradient
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 34-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article describes approaches to the discontinuous optimization using the concept of the approximate gradient. The approximate gradient is an integral operator and may be considered as the generalization of the notion of gradient for nondifferential and discontinuous functions. This concept make it possible to generalize the basic theorems of differential calculus and to construct the numerical methods for solving discontinuous extremal problems. The main results of researches fulfilled at the Department of Control Theory and Optimization last years are considered in the article.
Keywords: nondifferential optimization, discontinuous optimization, approximate gradient, necessary optimality conditions, numerical methods, package of nondifferential optimization programs.
@article{VCHGU_2013_16_a2,
     author = {T. B. Bigil'deeva and V. E. Rolshchikov},
     title = {On the approaches to optimization of discontinious functions based on the approximate gradient},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {34--45},
     year = {2013},
     number = {16},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a2/}
}
TY  - JOUR
AU  - T. B. Bigil'deeva
AU  - V. E. Rolshchikov
TI  - On the approaches to optimization of discontinious functions based on the approximate gradient
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2013
SP  - 34
EP  - 45
IS  - 16
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a2/
LA  - ru
ID  - VCHGU_2013_16_a2
ER  - 
%0 Journal Article
%A T. B. Bigil'deeva
%A V. E. Rolshchikov
%T On the approaches to optimization of discontinious functions based on the approximate gradient
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2013
%P 34-45
%N 16
%U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a2/
%G ru
%F VCHGU_2013_16_a2
T. B. Bigil'deeva; V. E. Rolshchikov. On the approaches to optimization of discontinious functions based on the approximate gradient. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 34-45. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a2/

[1] V. D. Batukhtin, L. A. Maiboroda, “Ob odnoi formalizatsii ekstremalnykh zadach”, Dokl. AN SSSR, 250:1 (1980), 11–14 | MR | Zbl

[2] V. D. Batukhtin, L. A. Maiboroda, Optimizatsiya razryvnykh funktsii, Nauka, M., 1984, 208 pp. | MR

[3] V. D. Batukhtin, V. E. Rolschikov, “K resheniyu razryvnykh variatsionnykh zadach”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika, 1994, no. 1, 28–35 | MR

[4] V. E. Rolschikov, K voprosu ob obobschennom ekstremume nedifferentsiruemykh funktsii, Dep. v VINITI, No 3627–83, IMM UNTs AN SSSR, Sverdlovsk, 1983, 33 pp.

[5] V. E. Rolschikov, “Approksimatsionnyi minimum odnogo klassa razryvnykh funktsii”, Negladkie zadachi optimizatsii i upravleniya, sb. nauch. tr, UrO AN SSSR, Sverdlovsk, 1988, 33–45

[6] V. D. Batukhtin, L. A. Maiboroda, Razryvnye ekstremalnye zadachi, Gippokrat, SPb., 1995, 358 pp.

[7] V. E. Rolschikov, “O skhodimosti posledovatelnosti tochek uslovnogo approksimatsionnogo minimuma”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika, 1991, no. 1, 112–117

[8] V. E. Rolschikov, “Neobkhodimye usloviya approksimatsionnogo uslovnogo minimuma”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2003, no. 9, 158–170

[9] V. E. Rolshchikov, “Conditional Approximation Minimum and Approximation Saddle Points of Convex Functions”, Nonsmooth and Discontinuous Problems of Control and Optimization (NDPCO’98), Proceeding volume from the IFAC Workshop, Chelyabinsk, 1998, 191–192 | MR

[10] S. I. Bigildeev, T. B. Bigildeeva, “Approximate Gradient Methods and the Necessary Conditions for the Extremum of Discontinuous Functions”, Nonsmooth and Discontinuous Problems of Control and Optimization (NDPCO’98), Proceeding volume from the IFAC Workshop, Chelyabinsk, 1998, 25–34

[11] S. N. Bernshtein, Sobranie sochinenii, v 4 t., v. 3, Differentsialnye uravneniya, variatsionnoe ischislenie i geometriya, Izd-vo AN SSSR, M., 1960, 440 pp. | MR

[12] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988, 279 pp. | MR

[13] V. D. Batukhtin, S. I. Bigildeev, T. B. Bigildeeva, “Optimizatsiya summiruemykh funktsii”, Kibernetika i sistemnyi analiz, 2002, no. 3, 73–89 | Zbl

[14] V. D. Batukhtin, S. I. Bigildeev, “K voprosu o nasledovanii funktsiei differentsialnykh svoistv ot potentsialov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 1, 2005, 32–42

[15] S. I. Bigildeev, V. E. Rolschikov, “Svoistva approksimatsionnogo gradienta v zavisimosti ot vesovoi funktsii”, Izv. RAN. Teoriya i sistemy upravleniya, 1997, no. 4, 89–94 | MR | Zbl

[16] S. I. Bigildeev, “Potentsialnye svoistva approksimatsionnogo gradienta”, sb. nauch. tr, Mat. struktury i modelirovanie, 6, Omsk. gos. un-t, Omsk, 200, 12–20 | MR

[17] S. I. Bigildeev, “Approksimatsionni gradient i proizvodnye Soboleva”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika, 2002, no. 6, 30–34 | MR | Zbl

[18] L. A. Lyusternik, V. I. Sobolev., Elementy funktsionalnogo analiza, Nauka, M., 1965, 519 pp. | MR

[19] S. I. Bigildeev, “Approksimatsionnaya proizvodnaya kak mnogoznachnoe otobrazhenie”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika, 1996, no. 3, 21–33 | MR

[20] S. I. Bigildeev, “Monotonnye po napravleniyu funktsii i ikh svoistva”, Nekotorye zadachi dinamiki i upravleniya, sb. nauch. tr, Izd-vo Chelyab. gos. un-ta, Chelyabinsk, 2005, 4–20

[21] A. R. Sonn, M. Mogeau, “Discontinuous piecewise linear optimization”, Mathematical Programming, 80 (1998), 315–380 | MR

[22] V. D. Batukhtin, S. I. Bigildeev, T. B. Bigildeeva, “Chislennye metody resheniya razryvnykh ekstremalnykh zadach”, Izv. RAN. Teoriya i sistemy upravleniya, 1997, no. 3, 113–120 | Zbl

[23] T. B. Bigildeeva, V. E. Rolschikov, “Chislennye metody optimizatsii razryvnykh funktsii”, Izv. RAN. Tekhn. kibernetika, 1994, no. 3, 47–54

[24] T. B Bigildeeva, “O vychislenii mnogomernykh integralov po sharu dlya nekotorykh razryvnykh funktsii”, Kubaturnye formuly i ikh prilozheniya, sb. mater. 6-go Mezhdunar. seminara, In-t matematiki s vychislit. tsentrom Ufim. nauch. tsentra RAN, Ufa, 2001, 22–26

[25] T. B. Bigildeeva, O. P. Gaidukova, S. A. Nikitina, “O vychislenii approksimatsionnogo gradienta dlya nekotorykh klassov razryvnykh funktsii”, sb. nauch. tr., Mat. struktury i modelirovanie, 7, Omsk. gos. un-t, Omsk, 2001, 5–17 | MR

[26] S. I. Bigildeev, “Simpleksnyi metod kak adaptivnyi algoritm”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2003, no. 8, 27–34 | MR

[27] V. V. Tarkaev, “O programmnoi podderzhke chislennogo eksperimentirovaniya”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 1996, no. 3, 163–178

[28] T. B. Bigildeeva, V. V. Tarkaev, “O pakete programm nedifferentsiruemoi optimizatsii”, sb. nauch. tr., Mat. struktury i modelirovanie, 9, Omsk. gos. un-t, Omsk, 2002, 158–165

[29] T. B. Bigildeeva, O. V. Tarkaeva, “Kompyuternoe posobie «Sorevnovanie metodov optimizatsii»”, Pontryaginskie chteniya, tez. dokl. Voronezh. vesen. mat. shk., Voronezh. gos. un-t, Voronezh, 2001, 23