Proof of the Shubert theorem
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 125-129
Cet article a éte moissonné depuis la source Math-Net.Ru
The famous Schubert theorem states that every nontrivial knot on S3 admits a unique decomposition into connecetd sum of priem knots. The proof was very cumbersome and took more than 40 pages. In this papper we describe another short proof of the Schubert theorem, which is based on the theory of the roots of topological objects, discovered by S. Matveev.
Keywords:
knot, connected sum
Mots-clés : prime decomposition.
Mots-clés : prime decomposition.
@article{VCHGU_2013_16_a12,
author = {A. M. Kulakova},
title = {Proof of the {Shubert} theorem},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {125--129},
year = {2013},
number = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a12/}
}
A. M. Kulakova. Proof of the Shubert theorem. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 125-129. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a12/
[1] H. Schubert, “Die eindeutige Zerlegbarkeit eines Knotens in Primknoten”, Akad. Wiss. Math.-Nat. Kl., S.-B. Heidelberger, 1949, 57–104 | MR
[2] S. V. Matveev, “Korni geometricheskikh ob'ektov”, Uspekhi mat. nauk, 67:3(405) (2012), 63–114 | DOI | MR | Zbl
[3] R. Krouel, A. R. Foks, Vvedenie v teoriyu uzlov, Mir, M., 1967 | MR