Proof of the Shubert theorem
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 125-129

Voir la notice de l'article provenant de la source Math-Net.Ru

The famous Schubert theorem states that every nontrivial knot on S3 admits a unique decomposition into connecetd sum of priem knots. The proof was very cumbersome and took more than 40 pages. In this papper we describe another short proof of the Schubert theorem, which is based on the theory of the roots of topological objects, discovered by S. Matveev.
Keywords: knot, connected sum
Mots-clés : prime decomposition.
@article{VCHGU_2013_16_a12,
     author = {A. M. Kulakova},
     title = {Proof of the {Shubert} theorem},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {125--129},
     publisher = {mathdoc},
     number = {16},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a12/}
}
TY  - JOUR
AU  - A. M. Kulakova
TI  - Proof of the Shubert theorem
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2013
SP  - 125
EP  - 129
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a12/
LA  - ru
ID  - VCHGU_2013_16_a12
ER  - 
%0 Journal Article
%A A. M. Kulakova
%T Proof of the Shubert theorem
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2013
%P 125-129
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a12/
%G ru
%F VCHGU_2013_16_a12
A. M. Kulakova. Proof of the Shubert theorem. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 125-129. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a12/