Invariant solutions of a nonclassical mathematical physics equation
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 119-124
Symmetry analysis is carried out for a nonclassical mathematical physics equation. Principal Lie algebra and optimal system of its subalgebras is found for the equation. These results were used for calculating of invariant solutions.
Keywords:
group analysis, admitted group
Mots-clés : principal Lie algebra, optimal system of subalgebras, invariant solution.
Mots-clés : principal Lie algebra, optimal system of subalgebras, invariant solution.
@article{VCHGU_2013_16_a11,
author = {N. V. Filin and V. E. Fedorov},
title = {Invariant solutions of a nonclassical mathematical physics equation},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {119--124},
year = {2013},
number = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a11/}
}
TY - JOUR AU - N. V. Filin AU - V. E. Fedorov TI - Invariant solutions of a nonclassical mathematical physics equation JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2013 SP - 119 EP - 124 IS - 16 UR - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a11/ LA - ru ID - VCHGU_2013_16_a11 ER -
%0 Journal Article %A N. V. Filin %A V. E. Fedorov %T Invariant solutions of a nonclassical mathematical physics equation %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2013 %P 119-124 %N 16 %U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a11/ %G ru %F VCHGU_2013_16_a11
N. V. Filin; V. E. Fedorov. Invariant solutions of a nonclassical mathematical physics equation. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 119-124. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a11/