Linearized model for Kelvin – Voight fluid
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 114-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability is studied for initial boundary value problem to linearized integro-differential system of equations that modelling a dynamics of viscoelastic noncompressible Kelvin – Voight fluid.
Keywords: Oskolkov equations system, integro-differential equation, initial boundary value problem, viscoelastic fluid, Kelvin – Voight model.
@article{VCHGU_2013_16_a10,
     author = {E. A. Omel'chenko},
     title = {Linearized model for {Kelvin} {\textendash} {Voight} fluid},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {114--118},
     year = {2013},
     number = {16},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a10/}
}
TY  - JOUR
AU  - E. A. Omel'chenko
TI  - Linearized model for Kelvin – Voight fluid
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2013
SP  - 114
EP  - 118
IS  - 16
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a10/
LA  - ru
ID  - VCHGU_2013_16_a10
ER  - 
%0 Journal Article
%A E. A. Omel'chenko
%T Linearized model for Kelvin – Voight fluid
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2013
%P 114-118
%N 16
%U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a10/
%G ru
%F VCHGU_2013_16_a10
E. A. Omel'chenko. Linearized model for Kelvin – Voight fluid. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 114-118. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a10/

[1] A. P. Oskolkov, “K teorii zhidkostei Foigta”, Zap. nauch. seminara LOMI AN SSSR, 96, 1980, 233–236 | Zbl

[2] A. P. Oskolkov, “Nachalno kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. Mat. in-ta AN SSSR, 179, 1988, 126–164 | MR

[3] V. E. Fedorov, E. A. Omelchenko, “On solvability of some classes of Sobolev type equation with delay”, Functional Differential Equations, 18:3–4 (2011), 187–199 | MR | Zbl

[4] V. E. Fëdorov, E. A. Omelchenko, “Neodnorodnye lineinye uravneniya sobolevskogo tipa s zapazdyvaniem”, Sib. mat. zhurn., 53:2 (2012), 418–429 | MR | Zbl

[5] V. E. Fëdorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 2000, no. 12, 173–200

[6] V. E. Fëdorov, “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2009, no. 11, 12–19 | Zbl

[7] R. E. Showalter, “Partial differential equations of Sobolev–Galperin type”, Pacific J. Math., 31 (1963), 787–793 | DOI | MR

[8] G. I. Marchuk, Chislennoe reshenie zadach dinamiki atmosfery i okeana, Gidrometeoizdat, L., 1974, 304 pp.

[9] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961, 204 pp. | MR

[10] N. D. Ivanova, V. E. Fëdorov, K. M. Komarova, “Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoi v okrestnosti statsionarnogo resheniya”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2012, no. 15, 49–70