Equilibrium programming and its application for a search of Nash equilibrium
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 6-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the important directions of the optimization theory and mathematical modeling is considered. Communication of the equilibrium programming with zero-sum games and the convex programming is provided. The equilibrium programming is applied for non-cooperative games, a survey of numerical methods is given.
Keywords: equilibrium programming, Nash equilibrium, non-cooperative game of $ N$ individuals.
@article{VCHGU_2013_16_a0,
     author = {S. R. Aleeva and E. O. Yakubovich},
     title = {Equilibrium programming and its application for a search of {Nash} equilibrium},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {6--20},
     year = {2013},
     number = {16},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a0/}
}
TY  - JOUR
AU  - S. R. Aleeva
AU  - E. O. Yakubovich
TI  - Equilibrium programming and its application for a search of Nash equilibrium
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2013
SP  - 6
EP  - 20
IS  - 16
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a0/
LA  - ru
ID  - VCHGU_2013_16_a0
ER  - 
%0 Journal Article
%A S. R. Aleeva
%A E. O. Yakubovich
%T Equilibrium programming and its application for a search of Nash equilibrium
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2013
%P 6-20
%N 16
%U http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a0/
%G ru
%F VCHGU_2013_16_a0
S. R. Aleeva; E. O. Yakubovich. Equilibrium programming and its application for a search of Nash equilibrium. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 16 (2013), pp. 6-20. http://geodesic.mathdoc.fr/item/VCHGU_2013_16_a0/

[1] V. I. Zorkaltsev, O. V. Khamisov, Ravnovesnye modeli v ekonomike i energetike, Nauka, Novosibirsk, 2006, 221 pp.

[2] A. S. Antipin, “Ravnovesnoe mnogokriterialnoe programmirovanie: proksimalnye metody”, Zhurn. vychisl. matematiki i mat. fiziki, 37:11 (1997), 1327–1339 | MR | Zbl

[3] A. S. Antipin, “Ravnovesnoe programmirovanie: metody gradientnogo tipa”, Zhurn. avtomatiki i telemekhaniki, 1997, no. 8, 125–137 | Zbl

[4] A. S. Antipin, “Ravnovesnoe mnogokriterialnoe programmirovanie: ekstraproksimalnye metody”, Zhurn. vychisl. matematiki i mat. fiziki, 47:12 (2007), 1998–2012 | MR

[5] A. S. Antipin, “Metody resheniya variatsionnykh neravenstv so svyazannymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 40:9 (2000), 1231–1307 | MR

[6] A. S. Antipin, “Obratnaya zadacha optimizatsii: postanovka zadachi i podkhod k ee resheniyu”, Obratnye zadachi mat. programmirovaniya, VTs RAN, M., 1992, 3–33

[7] F. P. Vasilev, Metody otpimizatsii, Faktorial Press, M., 2002, 824 pp.

[8] Sissy da S. Suzoa, P. R. Oliveira, J. X. da Cruz Neto et al., “A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant”, European Journal of Operational Research, 201:2 (2010), 365–376 | DOI | MR | Zbl