@article{VCHGU_2012_15_a8,
author = {F. G. Korablev},
title = {The order of prime summands for virtual knots},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {119--124},
year = {2012},
number = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a8/}
}
TY - JOUR AU - F. G. Korablev TI - The order of prime summands for virtual knots JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2012 SP - 119 EP - 124 IS - 15 UR - http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a8/ LA - ru ID - VCHGU_2012_15_a8 ER -
F. G. Korablev. The order of prime summands for virtual knots. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 119-124. http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a8/
[1] F. G. Korablev, S. V. Matveev, “Reduktsii uzlov v utolschennykh poverkhnostyakh i virtualnye uzly”, Dokl. Akad. nauk., 437:6 (2011.), 748–750 | Zbl
[2] F. G. Korablev, “Edinstvennost kornei uzlov v $F\times I$ i primarnye razlozheniya virtualnykh uzlov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 160–175
[3] L. H. Kauffman, “Virtual knot theory”, Europ. J. of Combinatorics, 20:7 (1999), 662-690 | DOI | MR
[4] S. V. Matveev, “Razlozhenie gomologicheski trivialnykh uzlov v $F\times I$”, Dokl. Akad. nauk, 433:1 (2010), 13–15 | Zbl
[5] G. Kuperberg, What is a virtual link?, Algebraic and Geometric Topology, 3 (2003), 587–591 | DOI | MR | Zbl
[6] S. Matveev, V. Turaev, “A semigroup of theta-curves in 3-manifolds”, Moscow Math. J., 11:4 (2011), 805–814 | MR | Zbl