The order of prime summands for virtual knots
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 119-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce a special class of rigid virtual knots. We prove that for all of these knots the order on the set of primary summands is well define. We construct an example, which show that the rigid property is essential.
Keywords: virtual knot, rigid knot, connecting sum, reduction.
@article{VCHGU_2012_15_a8,
     author = {F. G. Korablev},
     title = {The order of prime summands for virtual knots},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {119--124},
     year = {2012},
     number = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a8/}
}
TY  - JOUR
AU  - F. G. Korablev
TI  - The order of prime summands for virtual knots
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2012
SP  - 119
EP  - 124
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a8/
LA  - ru
ID  - VCHGU_2012_15_a8
ER  - 
%0 Journal Article
%A F. G. Korablev
%T The order of prime summands for virtual knots
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2012
%P 119-124
%N 15
%U http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a8/
%G ru
%F VCHGU_2012_15_a8
F. G. Korablev. The order of prime summands for virtual knots. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 119-124. http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a8/

[1] F. G. Korablev, S. V. Matveev, “Reduktsii uzlov v utolschennykh poverkhnostyakh i virtualnye uzly”, Dokl. Akad. nauk., 437:6 (2011.), 748–750 | Zbl

[2] F. G. Korablev, “Edinstvennost kornei uzlov v $F\times I$ i primarnye razlozheniya virtualnykh uzlov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 160–175

[3] L. H. Kauffman, “Virtual knot theory”, Europ. J. of Combinatorics, 20:7 (1999), 662-690 | DOI | MR

[4] S. V. Matveev, “Razlozhenie gomologicheski trivialnykh uzlov v $F\times I$”, Dokl. Akad. nauk, 433:1 (2010), 13–15 | Zbl

[5] G. Kuperberg, What is a virtual link?, Algebraic and Geometric Topology, 3 (2003), 587–591 | DOI | MR | Zbl

[6] S. Matveev, V. Turaev, “A semigroup of theta-curves in 3-manifolds”, Moscow Math. J., 11:4 (2011), 805–814 | MR | Zbl