Classification of knotted arcs in the thickenes punctured torus
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 112-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we classify knotted arcs in the thickened punctured torus $T_0\times I$. Arcs are constructed by a three-step process. First we enumerate graphs with 0, 1, 2 vertices of valence 4 and two vertices of valence 1, then for each graph we enumerate all corresponding knot projections, and after that we construct the corresponding minimal diagrams. For proving that all knotted arcs are different we use the generalized Kauffman polynomial.
Keywords: knotted arc, thikened punctured torus.
@article{VCHGU_2012_15_a7,
     author = {Ya. K. Ilyina},
     title = {Classification of knotted arcs in the thickenes punctured torus},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {112--118},
     year = {2012},
     number = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a7/}
}
TY  - JOUR
AU  - Ya. K. Ilyina
TI  - Classification of knotted arcs in the thickenes punctured torus
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2012
SP  - 112
EP  - 118
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a7/
LA  - ru
ID  - VCHGU_2012_15_a7
ER  - 
%0 Journal Article
%A Ya. K. Ilyina
%T Classification of knotted arcs in the thickenes punctured torus
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2012
%P 112-118
%N 15
%U http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a7/
%G ru
%F VCHGU_2012_15_a7
Ya. K. Ilyina. Classification of knotted arcs in the thickenes punctured torus. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 112-118. http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a7/

[1] L. Kauffman, “State models and the Jones polynomal”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl

[2] O. Viro, M. Polyak, “Gauss diagram formulas for Vassiliev invariants”, Intern. Math.s Research Not, 1994, no. 11, 445–453 | MR | Zbl