Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighborhood
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 49-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of nonlinear inverse problems with unknown parameters depending on the time is researched for the abstract Sobolev type equation in Banach spaces. Along with the Cauchy condition, the generalized Showalter condition is used in the statement of the problem. Theorems of existence and uniqueness of mild and smooth solutions are proved. General results are applied to a nonlinear evolution problem for the linearized Oskolkov system modeling the dynamics of a viscoelastic fluid.
Keywords: nonlinear inverse problem, degenerate operator semigroup, Oskolkov equations system, viscoelastic fluid.
@article{VCHGU_2012_15_a3,
     author = {N. D. Ivanova and V. E. Fedorov and K. M. Komarova},
     title = {Nonlinear inverse problem for the {Oskolkov} system, linearized in a stationary solution neighborhood},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {49--70},
     year = {2012},
     number = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a3/}
}
TY  - JOUR
AU  - N. D. Ivanova
AU  - V. E. Fedorov
AU  - K. M. Komarova
TI  - Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighborhood
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2012
SP  - 49
EP  - 70
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a3/
LA  - ru
ID  - VCHGU_2012_15_a3
ER  - 
%0 Journal Article
%A N. D. Ivanova
%A V. E. Fedorov
%A K. M. Komarova
%T Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighborhood
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2012
%P 49-70
%N 15
%U http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a3/
%G ru
%F VCHGU_2012_15_a3
N. D. Ivanova; V. E. Fedorov; K. M. Komarova. Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighborhood. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 49-70. http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a3/

[1] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. Mat. in-ta AN SSSR, 179, 1988, 126–164 | MR

[2] A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[3] N. L. Abasheeva, “Determination of a right-hand side term in an operator-differential equation of mixed type”, J. Inv. Ill-Posed Problems, 10:6 (2002), 547–560 | DOI | MR | Zbl

[4] V. E. Fedorov, A. V. Urazaeva, “An inverse problem for linear Sobolev type equations”, J. Inv. Ill-Posed Problems, 12 (2004), 387–396 | DOI | MR

[5] M. Al Horani, A. Favini, “An identification problem for first-order degenerate differential equations”, J. of Optimization Theory and Applications, 130 (2006), 41–60 | DOI | MR | Zbl

[6] Yu. E. Anikonov, N. L. Abasheeva, N. B. Ayupova, A. I. Kozhanov, M. V. Neschadim, I. R. Valitov, “Obratnye zadachi dlya evolyutsionnykh uravnenii”, Itogovyi nauchnyi otchet po mezhdistsiplinarnomu integratsionnomu proektu SO RAN: «Razrabotka teorii i vychislitelnoi tekhnologii resheniya obratnykh i ekstremalnykh zadach s prilozheniem v matematicheskoi fizike i gravimagnitorazvedke», Sib. elektron. mat. izv., 2008, no. 5, 549–580 | MR | Zbl

[7] A. V. Urazaeva, V. E. Fëdorov, “Zadachi prognoz-upravleniya dlya nekotorykh sistem uravnenii gidrodinamiki”, Differents. uravneniya, 2008, no. 44, 1111–1119 | MR | Zbl

[8] A. V. Urazaeva, V. E. Fëdorov, “O korrektnosti zadachi prognoz-upravleniya dlya nekotorykh sistem uravnenii”, Mat. zametki, 85:3 (2009), 440–450 | DOI | MR | Zbl

[9] V. E. Fëdorov, A. V. Urazaeva, “Lineinaya evolyutsionnaya obratnaya zadacha dlya uravnenii sobolevskogo tipa”, Neklassicheskie uravneniya matematicheskoi fiziki, sb. nauch. rabot, Izd-vo In-ta matematiki, 2010, 293–310

[10] V. E. Fëdorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 2000, no. 12, 173–200

[11] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker Inc., N. Y.–Basel, 2000 | MR

[12] V. E. Fëdorov, “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 20 (158):11 (2009), 12–19 | Zbl

[13] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, Inostr. lit., M., 1962 | MR

[14] O. A. Ladyzhenskaya., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961 | MR