The guaranteed result in the problem of distance minimization with integral constraint
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 41-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The same game in which the first player has integral constraint on control, and the second one has geometrical constraint, is considered. The purpose of the first player is to minimize the distance between the players at a fixed time $p$ with a limited stock of the resource, the goal of the second one is opposite. The players' controls to guarantee the fulfillment of purpose are constructed.
Keywords: differential games, integral constraint on the control of the player, guaranteed result.
@article{VCHGU_2012_15_a2,
     author = {S. R. Aleeva},
     title = {The guaranteed result in the problem of distance minimization with integral constraint},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {41--48},
     year = {2012},
     number = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a2/}
}
TY  - JOUR
AU  - S. R. Aleeva
TI  - The guaranteed result in the problem of distance minimization with integral constraint
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2012
SP  - 41
EP  - 48
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a2/
LA  - ru
ID  - VCHGU_2012_15_a2
ER  - 
%0 Journal Article
%A S. R. Aleeva
%T The guaranteed result in the problem of distance minimization with integral constraint
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2012
%P 41-48
%N 15
%U http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a2/
%G ru
%F VCHGU_2012_15_a2
S. R. Aleeva. The guaranteed result in the problem of distance minimization with integral constraint. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 41-48. http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a2/

[1] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[2] S. R. Aleeva, V. I. Ukhobotov, “Odnotipnaya igra s integralnym ogranicheniem pervogo igroka”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 1999, no. 4, 16–29

[3] S. R. Aleeva, Modelirovanie garantirovannogo rezultata v zadachakh upravleniya dvizheniem s integralnymi ogranicheniyami v usloviyakh vozdeistviya pomekh, dis. ... kand. fiz.-mat. nauk, Chelyabinsk, 2002, 145 pp.

[4] S. R. Aleeva, Differentsialnaya igra «malchik i krokodil» s integralnym ogranicheniem presledovatelya, Dep. v VINITI 04.10.99, No 2985-V99, 1999, 10 pp.

[5] S. R. Aleeva, “Ob odnoi differentsialnoi igre s integralnym ogranicheniem”, Matematika. Mekhanika. Informatika, materialy Vseros. nauch. konf. (Chelyabinsk, 19–22 sent. 2006 g.), ed. S. V. Matveev, Chelyab. gos. un-t, Chelyabinsk, 2007, 7–13 | MR