Existence of the solution for boundary value problem
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 102-106
Voir la notice de l'article provenant de la source Math-Net.Ru
This article concerns the boundary value problem for the second-order elliptical
equation in a bounded domain. The coefficient of the desired function is non-positive
all over domain, but in the small neighborhood of an interior point. The question is,
under what coefficient’s contingencies in this small neighborhood of an interior point
statements claiming existing and uniqueness of solution the boundary value problem
remain true.
Keywords:
elliptical equation, boundary value problem.
@article{VCHGU_2011_14_a9,
author = {S. V. Repjevskij},
title = {Existence of the solution for boundary value problem},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {102--106},
publisher = {mathdoc},
number = {14},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a9/}
}
TY - JOUR AU - S. V. Repjevskij TI - Existence of the solution for boundary value problem JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2011 SP - 102 EP - 106 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a9/ LA - ru ID - VCHGU_2011_14_a9 ER -
%0 Journal Article %A S. V. Repjevskij %T Existence of the solution for boundary value problem %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2011 %P 102-106 %N 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a9/ %G ru %F VCHGU_2011_14_a9
S. V. Repjevskij. Existence of the solution for boundary value problem. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 102-106. http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a9/