Existence of the solution for boundary value problem
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 102-106

Voir la notice de l'article provenant de la source Math-Net.Ru

This article concerns the boundary value problem for the second-order elliptical equation in a bounded domain. The coefficient of the desired function is non-positive all over domain, but in the small neighborhood of an interior point. The question is, under what coefficient’s contingencies in this small neighborhood of an interior point statements claiming existing and uniqueness of solution the boundary value problem remain true.
Keywords: elliptical equation, boundary value problem.
@article{VCHGU_2011_14_a9,
     author = {S. V. Repjevskij},
     title = {Existence of the solution for boundary value problem},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {102--106},
     publisher = {mathdoc},
     number = {14},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a9/}
}
TY  - JOUR
AU  - S. V. Repjevskij
TI  - Existence of the solution for boundary value problem
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2011
SP  - 102
EP  - 106
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a9/
LA  - ru
ID  - VCHGU_2011_14_a9
ER  - 
%0 Journal Article
%A S. V. Repjevskij
%T Existence of the solution for boundary value problem
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2011
%P 102-106
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a9/
%G ru
%F VCHGU_2011_14_a9
S. V. Repjevskij. Existence of the solution for boundary value problem. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 102-106. http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a9/