The discrete spectrum of operators with two distant perturbations
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 37-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a periodic differential operator of second order with two distant perturbations. The perturbations are described by finite potentials. We study the behavior of the discrete spectrum of the perturbed operator. We construct the first two terms of the asymptotic expansions of the eigenvalues and corresponding eigenfunctions.
Keywords: spectrum, discrete spectrum, asymptotics, periodic operator
Mots-clés : distant perturbations.
@article{VCHGU_2011_14_a3,
     author = {A. M. Golovina},
     title = {The discrete spectrum of operators with two distant perturbations},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {37--45},
     year = {2011},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a3/}
}
TY  - JOUR
AU  - A. M. Golovina
TI  - The discrete spectrum of operators with two distant perturbations
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2011
SP  - 37
EP  - 45
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a3/
LA  - ru
ID  - VCHGU_2011_14_a3
ER  - 
%0 Journal Article
%A A. M. Golovina
%T The discrete spectrum of operators with two distant perturbations
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2011
%P 37-45
%N 14
%U http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a3/
%G ru
%F VCHGU_2011_14_a3
A. M. Golovina. The discrete spectrum of operators with two distant perturbations. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 37-45. http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a3/

[1] E. M. Harrell, “Double wells”, Communications in Mathematical Physic, 75:3 (1980), 239–261

[2] M. Klaus, B. Simon, “Binding of Schr$\rm{\ddot{o}}$dinger particles through conspiracy of potential wells”, Annales de l'Institut Henri Poincar'e, section A, 30:2 (1979), 83–87

[3] D. I. Borisov, P. Exner, “Exponential splitting of bound in a waveguide with a pair of distant windows”, Journal of Physics A: Mathematical and General, 37:10 (2004), 3411–3428

[4] D. I. Borisov, “Asymtotic behaviour of the spectrum of a waveguide with distant perturbation”, Mathematical Physics and Analytic Geometry, 10:2 (2007), 155–196

[5] D. I. Borisov, “Distant perturbation of the Laplacian in a multi-dimensional space”, Annales Henri Poincar'e, 8:7 (2007), 1371–1399

[6] A. M. Golovina, “Ob asimptotike rezolventy odnomernogo operatora s razbegayuschimisya vozmuscheniyami”, Matematika, sb. nauch. st. (Ufa, 2010), Uch. zap. fiz.-mat. fak. BGPU, 11, 11–16

[7] A. M. Golovina, “Ob asimptotike rezolventy odnomernogo periodicheskogo operatora s razbegayuschimisya vozmuscheniyami”, Matematika, sb. nauch. st. (Ufa, 2011), Uch. zap. fiz.-mat. fak. BGPU, 12, 8–112

[8] A. M. Golovina, “Rezolventy operatorov s razbegayuschimisya vozmuscheniyami”, Mat. zametki (to appear)