On the asymptotics of a solution of a boundary value problem in a domain perforated along boundary
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Poission problem in a model domain periodically perforated along the boundary. It is assumed that on the external boundary the homogenized Neumann condition is imposed while on the boundary of the cavities the Dirichlet condition is supposed. We construct and justify the asymptotic expansion of the solution to this problem.
Keywords: Laplace operator, perforated domain, small parameter, homogenization, asymptotics.
@article{VCHGU_2011_14_a2,
     author = {R. R. Gadyl'shin and Yu. O. Koroleva and G. A. Chechkin},
     title = {On the asymptotics of a solution of a boundary value problem in a domain perforated along boundary},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {27--36},
     year = {2011},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a2/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
AU  - Yu. O. Koroleva
AU  - G. A. Chechkin
TI  - On the asymptotics of a solution of a boundary value problem in a domain perforated along boundary
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2011
SP  - 27
EP  - 36
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a2/
LA  - ru
ID  - VCHGU_2011_14_a2
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%A Yu. O. Koroleva
%A G. A. Chechkin
%T On the asymptotics of a solution of a boundary value problem in a domain perforated along boundary
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2011
%P 27-36
%N 14
%U http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a2/
%G ru
%F VCHGU_2011_14_a2
R. R. Gadyl'shin; Yu. O. Koroleva; G. A. Chechkin. On the asymptotics of a solution of a boundary value problem in a domain perforated along boundary. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 27-36. http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a2/

[1] A. G. Belyaev, O singulyarno vozmuschennykh kraevykh zadachakh, dis. ...kand. fiz.-mat. nauk, M., 1990

[2] A. G. Belyaev, “Usrednenie smeshannoi kraevoi zadachi dlya uravneniya Puassona v oblasti, perforirovannoi vdol granitsy”, Uspekhi mat. nauk, 45:4 (1990), 123

[3] R.R. Gadylshin, “O kraevoi zadache dlya laplasiana s bystro ostsilliruyuschimi granichnymi usloviyami”, Dokl. RAN, 362:4 (1988), 456–459

[4] R.R. Gadylshin, “Ob asimptotke sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19

[5] R.R. Gadylshin, Yu.O. Korolëva, G.A. Chechkin, “O skhodimosti reshenii i sobstvennykh elementov kraevoi zadachi v oblasti, perforirovannoi vdol granitsy”, Differents. uravneniya, 45:5 (2010), 665–677

[6] R.R. Gadylshin,Yu.O. Korolëva, G.A. Chechkin, “Ob asimptotike prostogo sobstvennogo znacheniya kraevoi zadachi v oblasti, perforirovannoi vdol granitsy”, Differents. uravneniya, 47:6 (2011), 819–828

[7] A.M. Ilin., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[8] D.V. Larin, “Vyrozhdennaya kvazilineinaya zadacha Dirikhle dlya oblastei s melkozernistoi granitsei. Sluchai poverkhnostnogo raspredeleniya «zëren»”, Modelirovanie nepreryvnykh i diskretnykh sistem, Tr. In-ta priklad. matematiki i mekhaniki, 2, 1998, 104–115

[9] V.A. Marchenko, E.Ya. Khruslov, Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Nauk. dumka, Kiev, 1974

[10] V. G. Mikhailenko, “Kraevye zadachi s melko zernistoi granitsei dlya ellipticheskogo differentsialnogo operatora vtorogo poryadka. I”, Teoriya funktsii, funkts. analiz i prilozheniya, 1968, no. 6, 93–110; В. Г. Михайленко, “Краевые задачи с мелко зернистой границей для эллиптического дифференциального оператора второго порядка. II”, Теория функций, функц. анализ и приложения, 1969, No 9, 75–84

[11] G.A. Chechkin, “Asimptoticheskoe razlozhenie sobstvennykh znachenii i sobstvennykh funktsii ellipticheskogo operatora v oblasti s bolshim kolichestvom blizko raspolozhennykh na granitse «legkikh» kontsentrirovannykh mass. Dvumernyi sluchai”, Izv. RAN. Ser. mat., 69:4 (2005), 161–204

[12] Y. Amirat, G.A. Chechkin, R.R. Gadyl'shin, “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary”, Comp. Math. Math. Phys., 46:1 (2006), 97–110

[13] G.A. Chechkin [et al.], “Homogenization in Domains Randomly Perforated Along the Boundary”, Descrete and Continuous Dynamical Systems, Ser. B (DCDS-B), 12:4 (2009), 713–730

[14] G.A.Chechkin [et al.], “On the Friedrichs inequality in a domain perforated nonperiodically along the boundary. Homogenization procedure. Asymptotics in parabolic problems”, Russ. J. Math. Phys., 16:1 (2009), 1–16

[15] G.A. Chechkin, E. L. Ostrovskaya, “On Behaviour of a Body Randomly Perforated Along the Boundary”, Abstracts of the International Conference «Differential Equations and Related Topics» dedicated to the Centenary Anniversary of Ivan G. Petrovskii, XX Joint Session of Petrovskii Seminar and Moscow Mathematical Society (May 22–27, 2001, Moscow, Russia), Moscow University Press, M., 2001, 88

[16] T. Del Vecchio, “The thick Neumann's Sieve”, Ann. Mat. Pura Appl., 147:4 (1987), 363–402

[17] R.R. Gadyl'shin, “Asymptotics of the minimum egenvalue for a circle with fast oscillating boundary conditions”, C.R.Acad.Sei. Paris. Ser. I, 323:3 (1996), 319–323

[18] M. Lobo [et al.], “On Homogenization of Solutions of Boundary Value Problems in Domains, Perforated Along Manifolds”, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 4-e s'erie, 25:3–4 (1997), 611–629

[19] S. Ozawa, “Approximation of Green’s Function in a Region with Many Obstacles”, Geometry and Analysis of Manifolds (Katata/Kyoto, 1987), Lect. notes in Math., 1339, Springer Verlag, Berlin, 1988, 212–225

[20] E. Sánchez–Palencia, “Boundary value problems in domains containing perforated walls. Nonlinear partial differential equations and their applications”, Coll`ege de France Seminar (Paris, 1980/1981), v. III, Res. Notes in Math., 70, Pitman, Boston–London, 1982, 309–325