Passage through the local resonance for a linear dispersive wave
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 113-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we consider an inhomogeneous linear Schrodinger equation with rapidly oscillating right-hand side. We construct asymptotic solution to the small parameter in the presence of a local resonance. A complete asymptotic expansion of the solution is obtained using the matching method.
Keywords: small parameter, asymptotic solution, WKB approximation, resonance.
@article{VCHGU_2011_14_a11,
     author = {Z. R. Khakimova},
     title = {Passage through the local resonance for a linear dispersive wave},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {113--123},
     year = {2011},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a11/}
}
TY  - JOUR
AU  - Z. R. Khakimova
TI  - Passage through the local resonance for a linear dispersive wave
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2011
SP  - 113
EP  - 123
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a11/
LA  - ru
ID  - VCHGU_2011_14_a11
ER  - 
%0 Journal Article
%A Z. R. Khakimova
%T Passage through the local resonance for a linear dispersive wave
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2011
%P 113-123
%N 14
%U http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a11/
%G ru
%F VCHGU_2011_14_a11
Z. R. Khakimova. Passage through the local resonance for a linear dispersive wave. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 113-123. http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a11/

[1] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp.

[2] V.P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988, 312 pp.

[3] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976, 292 pp.

[4] F. Olver, Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978, 376 pp.

[5] M.V. Fedoryuk, Obyknovennye differentsialnye uravneniya, Nauka, M., 1980, 352 pp.

[6] M.V. Fedoryuk, Asimptotika, integraly i ryady, Nauka, M., 1987, 544 pp.

[7] J. Kevorkian, “Passage through resonanse for a one–dimensional oscillator with slowly varying frequency”, SIAM J. Appl. Math., 20 (1971), 364–374

[8] S. Yu. Dobrokhotov, P. N. Zhevandrov, V. M. Kuzmina, “Nelokalnye nelineinye uravneniya vetrovykh voln nad nerovnym dnom”, Priklad. matematika i mekhanika, 51:5 (1987), 798–806

[9] J.C. Neu, “Resonantly interacting waves”, SIAM J. Appl. Math., 43:1 (1983), 141–156

[10] L.A. Kalyakin, “Lokalnyi rezonans v slabonelineinoi zadache”, Mat. zametki, 44:5 (1988), 697–699

[11] L.A. Kalyakin, “Metod VKB v slabonelineinoi zadache s lokalnym rezonansom”, Metody resheniya zadach matfiziki, sbornik, Ufa, 1989, 56–69

[12] V.V. Ulin, “O primenenii metoda soglasovaniya asimptoticheskikh razlozhenii dlya zadachi Koshi s fazovym vyrozhdeniem v nachalnykh dannykh”, Svoistva reshenii differents. uravnenii, sbornik, Ufa, 1988, 103–114