@article{VCHGU_2011_14_a0,
author = {D.I. Borisov},
title = {On the homogenization of {Schrodinger} operator in a strip with frequent alternation of boundary conditions},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {6--11},
year = {2011},
number = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a0/}
}
TY - JOUR AU - D.I. Borisov TI - On the homogenization of Schrodinger operator in a strip with frequent alternation of boundary conditions JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2011 SP - 6 EP - 11 IS - 14 UR - http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a0/ LA - ru ID - VCHGU_2011_14_a0 ER -
%0 Journal Article %A D.I. Borisov %T On the homogenization of Schrodinger operator in a strip with frequent alternation of boundary conditions %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2011 %P 6-11 %N 14 %U http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a0/ %G ru %F VCHGU_2011_14_a0
D.I. Borisov. On the homogenization of Schrodinger operator in a strip with frequent alternation of boundary conditions. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 6-11. http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a0/
[1] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. priblizhenie reshenii v klasse Soboleva $H^1({\mathbb R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130
[2] V. V.Zhikov, “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601
[3] S. E. Pastukhova, “O nekotorykh otsenkakh iz usredneniya zadach teorii uprugosti”, Dokl. RAN, 406:5 (2006), 604–608
[4] D. Borisov, R. Bunoiu, G. Cardone, “Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows”, J. Math. Sci., 176:6 (2011), 774–785
[5] D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. H. Poincaré, 11:8 (2011), 1591–1627
[6] D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with an infinite number of small windows”, C.R. Mathematique, 349:1–2 (2011), 53–56
[7] D. Borisov, G. Cardone, “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A., 42:36 (2009), id365205, 21 pp.
[8] R.R. Gadylshin, “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19
[9] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973