On the homogenization of Schrodinger operator in a strip with frequent alternation of boundary conditions
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 6-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a planar quantum waveguide with frequent alternation type of boundary conditions. The waveguide is modeled by a planar strip. On its lower boundary we impose frequent alternation of Dirichlet and Neumann boundary conditions. As the operator we choose the Laplacian with a real potential. We study the case when the homogenized operator has the Dirichlet condition instead of the alternating ones.We prove the uniform resolvent convergence and obtain the estimates for the rate of convergence.
Keywords: homogenization, waveguide, rate of convergence.
@article{VCHGU_2011_14_a0,
     author = {D.I. Borisov},
     title = {On the homogenization of {Schrodinger} operator in a strip with frequent alternation of boundary conditions},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {6--11},
     year = {2011},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a0/}
}
TY  - JOUR
AU  - D.I. Borisov
TI  - On the homogenization of Schrodinger operator in a strip with frequent alternation of boundary conditions
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2011
SP  - 6
EP  - 11
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a0/
LA  - ru
ID  - VCHGU_2011_14_a0
ER  - 
%0 Journal Article
%A D.I. Borisov
%T On the homogenization of Schrodinger operator in a strip with frequent alternation of boundary conditions
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2011
%P 6-11
%N 14
%U http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a0/
%G ru
%F VCHGU_2011_14_a0
D.I. Borisov. On the homogenization of Schrodinger operator in a strip with frequent alternation of boundary conditions. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 14 (2011), pp. 6-11. http://geodesic.mathdoc.fr/item/VCHGU_2011_14_a0/

[1] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. priblizhenie reshenii v klasse Soboleva $H^1({\mathbb R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130

[2] V. V.Zhikov, “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601

[3] S. E. Pastukhova, “O nekotorykh otsenkakh iz usredneniya zadach teorii uprugosti”, Dokl. RAN, 406:5 (2006), 604–608

[4] D. Borisov, R. Bunoiu, G. Cardone, “Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows”, J. Math. Sci., 176:6 (2011), 774–785

[5] D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. H. Poincaré, 11:8 (2011), 1591–1627

[6] D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with an infinite number of small windows”, C.R. Mathematique, 349:1–2 (2011), 53–56

[7] D. Borisov, G. Cardone, “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A., 42:36 (2009), id365205, 21 pp.

[8] R.R. Gadylshin, “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19

[9] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973