A class of second order Sobolev type equations and degenerate groups of operators
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 59-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Initial boundary value problems for inhomogeneous partial differential equations unsolved with respect to second time derivative with polynomials of elliptic selfadjoint high order differential operator with respect to spatial variables is studied. Using reduction to system of first order equations and methods of degenerate semigroups of operators theory solvability conditions of considered problem is found. Obtained results are illustrated on the examples of Boussinesq equation and Boussinesq–Love equation.
Keywords: degenerate group of operators, elliptic operator of high order.
Mots-clés : Sobolev type equation
@article{VCHGU_2011_13_a5,
     author = {V. E. Fedorov},
     title = {A class of second order {Sobolev} type equations and degenerate groups of operators},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {59--75},
     year = {2011},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a5/}
}
TY  - JOUR
AU  - V. E. Fedorov
TI  - A class of second order Sobolev type equations and degenerate groups of operators
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2011
SP  - 59
EP  - 75
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a5/
LA  - ru
ID  - VCHGU_2011_13_a5
ER  - 
%0 Journal Article
%A V. E. Fedorov
%T A class of second order Sobolev type equations and degenerate groups of operators
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2011
%P 59-75
%N 13
%U http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a5/
%G ru
%F VCHGU_2011_13_a5
V. E. Fedorov. A class of second order Sobolev type equations and degenerate groups of operators. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 59-75. http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a5/

[1] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003 | MR | Zbl

[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[4] V. E. Fedorov, M. V. Plekhanova, “Slabye resheniya i problema kvadraticheskogo regulyatora dlya vyrozhdennogo differentsialnogo uravneniya v gilbertovom prostranstve”, Vychislitelnye tekhnologii, 9:2 (2004), 92–102 | MR | Zbl

[5] V. E. Fedorov, “Silno golomorfnye gruppy lineinykh uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Differents. uravneniya, 40:5 (2004), 702–712 | MR | Zbl

[6] M. V. Plekhanova, V. E. Fedorov, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 5, 40–44 | MR

[7] V. E. Fedorov, “Applications of the theory of degenerate operator semigroups to the initial-boundary-value problems”, J. Math. Sc., 126:6 (2005), 1658–1663 | DOI | MR | Zbl

[8] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, Priklad. matematika i mekhanika, 24:5 (1960), 58–73

[9] E. S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl

[10] Kh. Ikezi, “Eksperimentalnoe issledovanie solitonov v plazme”, Solitony v deistvii, Mir, M., 1981, 163–184

[11] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR

[12] S. A. Gabov, Novye zadachi matematiechskoi teorii voln, Nauka. Fizmatlit, M., 1998

[13] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi matem. nauk, 49:4 (1994), 47–74 | MR | Zbl

[14] G. A. Sviridyuk, O. V. Vakarina, “Zadacha Koshi dlya lineinykh uravnenii tipa Soboleva vysokogo poryadka”, Differents. uravneniya, 33:10 (1997), 1410–1418 | MR | Zbl

[15] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vtorogo poryadka”, Vychislitelnye tekhnologii, 8:4 (2003), 45–54 | Zbl

[16] A. A. Zamyshlyaeva, “Ob odnom uravnenii sobolevskogo tipa na grafe”, Vestnik YuUrGU. Ser. Matematicheskoe modelirovanie i programmirovanie, 2008, no. 27 (127), 45–49 | Zbl

[17] Kh. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR