Asymptotic of boundary value problem solution for elliptic equation in domain with small holes
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 49-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an asymptotic expansion of the boundary value problem solution for elliptic equation in domain with two small holes. We also prove that the constructed formal asymptotic series is а true asymptotic expansion.
Keywords: asymptotic expansion, boundary value problem, small parameter.
Mots-clés : Laplace equation
@article{VCHGU_2011_13_a4,
     author = {E. Yu. Postnikova},
     title = {Asymptotic of boundary value problem solution for elliptic equation in domain with small holes},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {49--58},
     year = {2011},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a4/}
}
TY  - JOUR
AU  - E. Yu. Postnikova
TI  - Asymptotic of boundary value problem solution for elliptic equation in domain with small holes
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2011
SP  - 49
EP  - 58
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a4/
LA  - ru
ID  - VCHGU_2011_13_a4
ER  - 
%0 Journal Article
%A E. Yu. Postnikova
%T Asymptotic of boundary value problem solution for elliptic equation in domain with small holes
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2011
%P 49-58
%N 13
%U http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a4/
%G ru
%F VCHGU_2011_13_a4
E. Yu. Postnikova. Asymptotic of boundary value problem solution for elliptic equation in domain with small holes. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 49-58. http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a4/

[1] A. M. Ilin, “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. 2. Oblast s malym otverstiem”, Mat. sbornik, 103:2 (1977), 265–284 | MR | Zbl

[2] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[3] S. Maz'ya, S. Nazarov, B. Plamenevskij, “Asymptotic theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains”, Operator Theory, Advances and Applications, 111:1 (2000), sh. 9 | MR

[4] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Akademii nauk, ser. matematicheskaya, 48:2 (1984)

[5] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptotika resheniya zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matematicheskii sbornik, 146:2 (1981), 187–217

[6] P. P. Gadylshin, “Rasscheplenie kratnogo sobstvennogo znacheniya v kraevoi zadache dlya membrany, zakreplennoi na malom uchastke granitsy”, Sibirskii matematicheskii zhurnal, 34:3 (1993), 43–61 | MR | Zbl

[7] D. I. Borisov, “O dvukhparametricheskoi asimptotike v odnoi kraevoi zadacha dlya Laplasiana”, Matematicheskie zametki, 70:4 (2001), 520–534 | DOI | Zbl

[8] D. I. Borisov, “O kraevoi zadache v tsilindre s chastoi smenoi tipa granichnykh uslovii”, Matematicheskii sbornik, 193:47 (2002), 37–68 | DOI | Zbl

[9] A. R. Danilin, A. M. Ilin, “Asimptotika resheniya zadachi o bystrodeistvii pri vozmuschenii nachalnykh uslovii”, Izvestiya Akademii nauk, Tekhnicheskaya kibernetika, 1994, no. 3, 96–103 | Zbl