Group classification for equations system of two-phase medium mechanics
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 38-48
Cet article a éte moissonné depuis la source Math-Net.Ru
Сonsider the system of differential equations of mechanics of two-phase mechanics medium, mixed gas and small particles. Temperature effects are not accounted. Arbitrary element in the system is pressure. The principal Lie group of symmetry is found. Specifications of arbitrary element, which can give additional symmetry, don`t exist. There are found optimal systems of subalgebras for the principal Lie algebra.
Keywords:
symmetry group of equation, Lie algebra, equations of two-phase medium mechanics.
Mots-clés : group classification, optimal system of subalgebras
Mots-clés : group classification, optimal system of subalgebras
@article{VCHGU_2011_13_a3,
author = {A. V. Panov},
title = {Group classification for equations system of two-phase medium mechanics},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {38--48},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a3/}
}
TY - JOUR AU - A. V. Panov TI - Group classification for equations system of two-phase medium mechanics JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2011 SP - 38 EP - 48 IS - 13 UR - http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a3/ LA - ru ID - VCHGU_2011_13_a3 ER -
%0 Journal Article %A A. V. Panov %T Group classification for equations system of two-phase medium mechanics %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2011 %P 38-48 %N 13 %U http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a3/ %G ru %F VCHGU_2011_13_a3
A. V. Panov. Group classification for equations system of two-phase medium mechanics. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 38-48. http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a3/
[1] N. N. Yanenko, R. I. Soloukhin, A. N. Papyrin, V. M. Fomin, Sverkhzvukovye dvukhfaznye techeniya v usloviyakh skorostnoi neravnovesnosti chastits, Nauka, Novosibirsk, 1980, 160 pp.
[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR
[3] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR
[4] B. D. Annin, V. O. Bytev, S. I. Senashov, Gruppovye svoistva uravnenii uprugosti i plastichnosti, Nauka, Novosibirsk, 1985 | MR
[5] V. I. Lagno, C. V. Spichak, V. I. Stognii, Simmetriinyi analiz uravnenii evolyutsionnogo tipa, Institut kompyuternykh issledovanii, M.– Izhevsk, 2004