Group classification for equations system of two-phase medium mechanics
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 38-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Сonsider the system of differential equations of mechanics of
two-phase mechanics medium, mixed gas and small particles.
Temperature effects are not accounted. Arbitrary element in the
system is pressure. The principal Lie group of symmetry is found.
Specifications of arbitrary element, which can give additional
symmetry, don`t exist. There are found optimal systems of
subalgebras for the principal Lie algebra.
Keywords:
symmetry group of equation, equations of two-phase
medium mechanics.
Mots-clés : group classification, Lie algebra, optimal system of subalgebras
Mots-clés : group classification, Lie algebra, optimal system of subalgebras
@article{VCHGU_2011_13_a3,
author = {A. V. Panov},
title = {Group classification for equations system of two-phase medium mechanics},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {38--48},
publisher = {mathdoc},
number = {13},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a3/}
}
TY - JOUR AU - A. V. Panov TI - Group classification for equations system of two-phase medium mechanics JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2011 SP - 38 EP - 48 IS - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a3/ LA - ru ID - VCHGU_2011_13_a3 ER -
%0 Journal Article %A A. V. Panov %T Group classification for equations system of two-phase medium mechanics %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2011 %P 38-48 %N 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a3/ %G ru %F VCHGU_2011_13_a3
A. V. Panov. Group classification for equations system of two-phase medium mechanics. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 38-48. http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a3/