Solvability of the inverse problem of external influence in the many-dimensional wave equation
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 27-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability of the inverse problem of finding a solution problem $u(x,t)$ and the unknown coefficients $q_{1}(t),\ldots,q_{m}(t)$ in the many-dimensional hyperbolic equation when setting the conditions for initial boundary value problem and the conditions of the overdetermination. Existence of solutions are proven.
Keywords: inverse problem, conditions of redefinition, hyperbolic equation, wave equation, a priori estimate.
@article{VCHGU_2011_13_a2,
     author = {S. S. Pavlov},
     title = {Solvability of the inverse problem of external influence in the many-dimensional wave equation},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {27--37},
     year = {2011},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a2/}
}
TY  - JOUR
AU  - S. S. Pavlov
TI  - Solvability of the inverse problem of external influence in the many-dimensional wave equation
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2011
SP  - 27
EP  - 37
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a2/
LA  - ru
ID  - VCHGU_2011_13_a2
ER  - 
%0 Journal Article
%A S. S. Pavlov
%T Solvability of the inverse problem of external influence in the many-dimensional wave equation
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2011
%P 27-37
%N 13
%U http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a2/
%G ru
%F VCHGU_2011_13_a2
S. S. Pavlov. Solvability of the inverse problem of external influence in the many-dimensional wave equation. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 13 (2011), pp. 27-37. http://geodesic.mathdoc.fr/item/VCHGU_2011_13_a2/

[1] A. I. Kozhanov, “Dokl. RAN”, Parabolicheskie uravneniya s neizvestnym koeffitsientom pogloscheniya, 409:6 (2006), 740–743 | MR | Zbl

[2] A. I. Kozhanov, “Obratnaya zadacha opredeleniya koeffitsienta pogloscheniya v odnomernom uravnenii nelineinoi diffuzii”, Matem. zametki YaGU, 15:2 (2008), 31–47 | MR

[3] A. A. Samarskii, P. N. Vabischevich, V. I. Vasilev, “Iteratsionnoe reshenie retrospektivnoi obratnoi zadachi teploprovodnosti”, Matematicheskoe modelirovanie, 9:5 (1997), 119–127 | MR | Zbl

[4] E. A. Kalinina, “Chislennoe issledovanie obratnoi zadachi vosstanovleniya plotnosti istochnika dvumernogo nestatsionarnogo uravneniya konvektsii-diffuzii”, Dalnevostochnyi matematicheskii zhurnal, 5:1 (2004), 89–99

[5] G. V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Dokl. RAN, 375:3 (2000), 315–319 | MR

[6] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR

[7] S. Ya. Yakubov, Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, Elm., Baku, 1985

[8] A. I. Kozhanov, Composite type equations and inverse problems, VSP, Utrecht, 1999 | MR | Zbl

[9] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR