Global solvability of some semilinear equations of Sobolev type
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 80-87

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work existence of unique strong solution on the given segment of the Cauchy and Showalter problems for two classes of semilinear differential first order equations in Banach spaces unsolved with respect to the derivative is shown with using of methods of degenerate operator semigroups theory. Abstract results are illustrated on the example of semilinear Dzektser equation.
Mots-clés : Sobolev type equation
Keywords: semilinear equation, strong solution, operator semigroup.
@article{VCHGU_2010_12_a9,
     author = {V. E. Fedorov and P. N. Davydov},
     title = {Global solvability of some semilinear equations of {Sobolev} type},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {80--87},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a9/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - P. N. Davydov
TI  - Global solvability of some semilinear equations of Sobolev type
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 80
EP  - 87
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a9/
LA  - ru
ID  - VCHGU_2010_12_a9
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A P. N. Davydov
%T Global solvability of some semilinear equations of Sobolev type
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 80-87
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a9/
%G ru
%F VCHGU_2010_12_a9
V. E. Fedorov; P. N. Davydov. Global solvability of some semilinear equations of Sobolev type. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 80-87. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a9/