Global solvability of some semilinear equations of Sobolev type
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 80-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work existence of unique strong solution on the given segment of the Cauchy and Showalter problems for two classes of semilinear differential first order equations in Banach spaces unsolved with respect to the derivative is shown with using of methods of degenerate operator semigroups theory. Abstract results are illustrated on the example of semilinear Dzektser equation.
Mots-clés : Sobolev type equation
Keywords: semilinear equation, strong solution, operator semigroup.
@article{VCHGU_2010_12_a9,
     author = {V. E. Fedorov and P. N. Davydov},
     title = {Global solvability of some semilinear equations of {Sobolev} type},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {80--87},
     year = {2010},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a9/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - P. N. Davydov
TI  - Global solvability of some semilinear equations of Sobolev type
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 80
EP  - 87
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a9/
LA  - ru
ID  - VCHGU_2010_12_a9
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A P. N. Davydov
%T Global solvability of some semilinear equations of Sobolev type
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 80-87
%N 12
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a9/
%G ru
%F VCHGU_2010_12_a9
V. E. Fedorov; P. N. Davydov. Global solvability of some semilinear equations of Sobolev type. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 80-87. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a9/

[1] G. A. Sviridyuk, “Mnogoobrazie reshenii odnogo nelineinogo singulyarnogo psevdoparabolicheskogo uravneniya”, DAN SSSR, 289:6 (1989), 1315–1318

[2] G. A. Sviridyuk, M. M. Yakupov, “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya sistemy Oskolkova”, Differents. uravneniya, 32:11 (1996), 1538–1543

[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[4] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983

[5] V. E. Fedorov, M. V. Plekhanova, “Optimalnoe upravlenie lineinymi uravneniyami sobolevskogo tipa”, Differents. uravneniya, 40:11 (2004), 1548–1556

[6] V. E. Fedorov, M. V. Plekhanova, “Solvability of start control problems for semilinear distributed Sobolev type systems”, Int. J. Mathematical Modelling and Numerical Optimisation, 1:3 (2010), 153–167

[7] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200

[8] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht; Boston, 2003

[9] V. E. Fedorov, “Obobschenie teoremy Khille – Iosidy na sluchai vyrozhdennykh polugrupp v lokalno vypuklykh prostranstvakh”, Sib. mat. zhurn., 46:2 (2005), 426–448

[10] V. E. Fedorov, “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestnik. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika Informatika, 2009, no. 11, 12–19

[11] E. S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033