To properties of solutions of linear partial differential equations
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 59-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper suggests a uniform viewpoint to mean value theorems for linear elliptic and hyperbolic partial differential equations that, in a certain cases, allows one to obtain new mean value formulas.
Keywords: partial differential equations, formula of mean value, mean value theorem.
@article{VCHGU_2010_12_a6,
     author = {I. P. Polovinkin},
     title = {To properties of solutions of linear partial differential equations},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {59--66},
     year = {2010},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a6/}
}
TY  - JOUR
AU  - I. P. Polovinkin
TI  - To properties of solutions of linear partial differential equations
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 59
EP  - 66
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a6/
LA  - ru
ID  - VCHGU_2010_12_a6
ER  - 
%0 Journal Article
%A I. P. Polovinkin
%T To properties of solutions of linear partial differential equations
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 59-66
%N 12
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a6/
%G ru
%F VCHGU_2010_12_a6
I. P. Polovinkin. To properties of solutions of linear partial differential equations. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 59-66. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a6/

[1] D. Gilbarg, P. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp.

[2] V. A. Ilin, “O ryadakh Fure po fundamentalnym sistemam funktsii operatora Beltrami”, Differents. uravneniya, 5:11 (1969), 1940–1978

[3] V. A. Ilin, “Nekotorye svoistva regulyarnogo resheniya uravneniya Gelmgoltsa v ploskoi oblasti”, Mat. zametki, 15:6 (1974), 885–890

[4] V. A. Ilin, E. I. Moiseev, “Ob odnom obobschenii formuly srednego znacheniya dlya regulyarnogo resheniya uravneniya Shredingera”, Problemy matem. fiziki i vychisl. matematiki, IPM AN SSSR, 1977, 157–166

[5] V. A. Ilin, E. I. Moiseev, “Formula srednego znacheniya dlya prisoedinennykh funktsii operatora Laplasa”, Differents. uravneniya, 17:10 (1981), 1908–1910

[6] E. I. Moiseev, “Formula srednego dlya sobstvennykh funktsii ellipticheskogo samosopryazhennogo operatora vtorogo poryadka”, Dokl. AN SSSR, 197:3 (1971), 524–525

[7] E. I. Moiseev, “Asimptoticheskaya formula srednego znacheniya dlya regulyarnogo resheniya differentsialnogo uravneniya”, Differents. uravneniya, 16:5 (1980), 827–844

[8] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964, 534 pp.

[9] L. A. Ivanov, I. P. Polovinkin, “O nekotorykh svoistvakh operatora Beltrami v rimanovoi metrike”, Doklady RAN, 365:3 (1999), 306–309

[10] F. Ion, Ploskie volny i sfericheskie srednie, Inostr. lit., M., 1958, 158 pp.

[11] A. V. Bitsadze, A. M. Nakhushev, “K teorii uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Differentsialnye uravneniya, 10:12 (1974), 2184–2191

[12] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1958, 440 pp.

[13] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Mir, M., 1986, 464 pp.

[14] V. Z. Meshkov, I. P. Polovinkin, “K svoistvam reshenii lineinykh uravnenii v chastnykh proizvodnykh”, Chernozemnyi almanakh nauchnykh issledovanii. Seriya “Fundamentalnaya matematika”, 2007, no. 1(5), 3–11