A problem with mixed control for a class of linear Sobolev type equations
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 49-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem with mixed control for distributed systems not solvable with respect to the time derivative is researched. The quality functional in the problem is weak with respect to the state function. Abstract results are illustrated on the example of the control problem for phase field equations.
Keywords: optimal control, distributed system
Mots-clés : Sobolev type equation.
@article{VCHGU_2010_12_a5,
     author = {M. V. Plekhanova and A. F. Islamova},
     title = {A problem with mixed control for a class of linear {Sobolev} type equations},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {49--58},
     year = {2010},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a5/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - A. F. Islamova
TI  - A problem with mixed control for a class of linear Sobolev type equations
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 49
EP  - 58
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a5/
LA  - ru
ID  - VCHGU_2010_12_a5
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A A. F. Islamova
%T A problem with mixed control for a class of linear Sobolev type equations
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 49-58
%N 12
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a5/
%G ru
%F VCHGU_2010_12_a5
M. V. Plekhanova; A. F. Islamova. A problem with mixed control for a class of linear Sobolev type equations. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 49-58. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a5/

[1] Zh.-L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972

[2] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200

[3] G. A. Sviridyuk, A. A. Efremov, “Zadacha optimalnogo upravleniya dlya lineinykh uravnenii tipa Soboleva”, Izv. vuzov. Matematika, 1996, no. 12, 75–83

[4] G. A. Sviridyuk, A. A. Efremov, “Optimalnoe upravlenie odnim klassom lineinykh vyrozhdennykh uravnenii”, DAN, 364:3 (1999), 323–325

[5] M. V. Plekhanova, V. E. Fedorov, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 5, 40–44

[6] V. E. Fedorov, M. V. Plekhanova, “Optimalnoe upravlenie lineinymi uravneniyami sobolevskogo tipa”, Differents. uravneniya, 40:11 (2004), 1548–1556

[7] M. V. Plekhanova, V. E. Fedorov, “Zadachi startovogo upravleniya dlya lineinykh uravnenii sobolevskogo tipa”, Vestnik YuUrGU. Ser. Matematika. Fizika. Khimiya, 2005, no. 6, 43–49

[8] M. V. Plekhanova, V. E. Fedorov, “Kriterii optimalnosti v zadache upravleniya dlya lineinogo uravneniya sobolevskogo tipa”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 37–44

[9] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[10] P. I. Plotnikov, A. V. Klepacheva, “Uravneniya fazovogo polya i gradientnye potoki marginalnykh funktsii”, Sib. mat. zhurn., 42:3 (2001), 651–669

[11] V. E. Fedorov, A. V. Urazaeva, “Obratnaya zadacha dlya odnogo klassa singulyarnykh lineinykh operatorno-differentsialnykh uravnenii”, Tr. Voronezhsk. zimn. mat. shk., VGU, Voronezh, 2004, 161–172