The resonance elliptic boundary value problem with discontinuous nonlinearity of linear growth
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 43-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the existence of general solution of the resonance elliptic boundary value problem with discontinuous nonlinearity of linear growth by topological method.
Keywords: resonance elliptic boundary value problem, discontinuous nonlinearity of linear growth, Leray-Schauder theorem.
@article{VCHGU_2010_12_a4,
     author = {V. N. Pavlenko},
     title = {The resonance elliptic boundary value problem with discontinuous nonlinearity of linear growth},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {43--48},
     year = {2010},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a4/}
}
TY  - JOUR
AU  - V. N. Pavlenko
TI  - The resonance elliptic boundary value problem with discontinuous nonlinearity of linear growth
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 43
EP  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a4/
LA  - ru
ID  - VCHGU_2010_12_a4
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%T The resonance elliptic boundary value problem with discontinuous nonlinearity of linear growth
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 43-48
%N 12
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a4/
%G ru
%F VCHGU_2010_12_a4
V. N. Pavlenko. The resonance elliptic boundary value problem with discontinuous nonlinearity of linear growth. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 43-48. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a4/

[1] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 272

[2] M. G. Lepchinskii, Suschestvovanie i ustoichivost reshenii kraevykh zadach ellipticheskogo tipa s razryvnymi nelineinostyami, dis. ...k-ta fiz.-mat. nauk : 01.01.02, Chelyabinsk, 2005, 96 pp.

[3] E. A. Chizh, Rezonansnye kraevye zadachi i variatsionnye neravenstva ellipticheskogo tipa s razryvnymi nelineinostyami bez usloviya Landesmana—Lazera, dis. ...k-ta fiz.-mat. nauk : 01.01.02, Chelyabinsk, 2005, 118 pp.

[4] V. N. Pavlenko, V. V. Vinokur, “Rezonansnye kraevye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izvestiya vuzov. Matematika., 2001, no. 5, 43–58

[5] V. N. Pavlenko, V. V. Vinokur, “Teoremy suschestvovaniya dlya uravnenii s nekoertsitivnymi razryvnymi operatorami”, Ukr. mat. zhurnal, 54:3 (2002), 349–363

[6] D. Gilbarg, M. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp.

[7] V. N. Pavlenko, “Uravneniya parabolicheskogo tipa s razryvnoi nelineinostyu stepennogo rosta”, Vestnik Chelyab. gos. universiteta. Matematika. Mekhanika. Informatika, 2008, no. 6, 49–53

[8] Yu. G. Borisovich [i dr.], Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 216 pp.

[9] R. Iannacci, M. N. Mcashma, J. R. Ward, “Nonkinear second order elliptic partial differential equations at resonance”, Trans. of American mathematical society, 311:2 (1989), 711–726

[10] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967, 624 pp.