Solvability of boundary problems for Schrödinger equation with real coefficient
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 32-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the given work boundary problems for nonlinear Schrödinger equation is considered when the coefficient near unknown function in the equation is a square-summable function. Well-posedness of a considered boundary problem is investigated.
Keywords: Schrödinger equation, boundary value problem, square-integrable coefficient.
@article{VCHGU_2010_12_a3,
     author = {N. M. Mahmudov},
     title = {Solvability of boundary problems for {Schr\"odinger} equation with real coefficient},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {32--42},
     year = {2010},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a3/}
}
TY  - JOUR
AU  - N. M. Mahmudov
TI  - Solvability of boundary problems for Schrödinger equation with real coefficient
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 32
EP  - 42
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a3/
LA  - ru
ID  - VCHGU_2010_12_a3
ER  - 
%0 Journal Article
%A N. M. Mahmudov
%T Solvability of boundary problems for Schrödinger equation with real coefficient
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 32-42
%N 12
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a3/
%G ru
%F VCHGU_2010_12_a3
N. M. Mahmudov. Solvability of boundary problems for Schrödinger equation with real coefficient. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 32-42. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a3/

[1] V. Bukkel, Teoriya sverkhprovodimosti. Osnovy i prilozheniya, Mir, M., 1975

[2] M. A. Vorontsov, V. N. Shmalgauzen, Printsipy adaptivnoi optiki, Nauka, M., 1985

[3] A. D. Iskenderov, G. Ya. Yakubov, “Variatsionnyi metod resheniya obratnoi zadachi ob opredelenii kvantovomekhanicheskogo potentsiala”, DAN SSSR, 303:5 (1988), 1044–1048

[4] A. D. Iskenderov, G. Ya. Yakubov, “Optimalnoe upravlenie nelineinymi kvantovomekhanicheskimi sistemami”, Avtomatika i telemekhanika, 1989, no. 12, 27–38

[5] G. Ya. Yakubov, Optimalnoe upravlenie koeffitsientom kvazilineinogo uravneniya Shredingera, Doktorsk. diss., Kiev, 1994

[6] G. Ya. Yakubov, M. A. Musaeva, “O variatsionnom metode resheniya mnogomernoi obratnoi zadachi dlya nelineinogo nestatsionarnogo uravneniya Shredingera”, Izv. AN Azerb. Ser. fiz.-tekh. i matem. nauk, 15:5-6 (1994), 58–61

[7] L. Baudouin, O. Kavian, J. P. Puel, “Regularity for a Schrodinger equation with singular potentials and application to bilinear optimal control”, J. Differential Equations, 216 (2005), 188–222

[8] E. Cances, C. Le Bris, M. Pilot, “Controle optimal bilineare d'uno equation de Schrodinger”, C.R. Acad. Sci Paris. Ser. 1, 330 (2000), 567–571

[9] O. A. Ladyzhenskaya, V. A. Solonikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[10] L. S. Pontryagin, Obyknovennye differentsialnye uravneniya, Nauka, M., 1982

[11] A. D. Iskenderov, “Opredelenie potentsiala v nestatsionarnom uravnenii Shredingera”, Problemy matem. model. i opt.upravleniya, Baku, 2001, 6—36

[12] O.A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp.