The optimal in order estimation of solution of two-dimensional Stefan inverse problem
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 20-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The estimation of the solution of a two-dimensional boundary inverse problem with mobile boundary by optimal in order method is suggested.
Keywords: Stefan inverse problem, projection regularization method, optimal in order estimation.
@article{VCHGU_2010_12_a2,
     author = {A. S. Kutuzov},
     title = {The optimal in order estimation of solution of two-dimensional {Stefan} inverse problem},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {20--31},
     year = {2010},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a2/}
}
TY  - JOUR
AU  - A. S. Kutuzov
TI  - The optimal in order estimation of solution of two-dimensional Stefan inverse problem
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 20
EP  - 31
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a2/
LA  - ru
ID  - VCHGU_2010_12_a2
ER  - 
%0 Journal Article
%A A. S. Kutuzov
%T The optimal in order estimation of solution of two-dimensional Stefan inverse problem
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 20-31
%N 12
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a2/
%G ru
%F VCHGU_2010_12_a2
A. S. Kutuzov. The optimal in order estimation of solution of two-dimensional Stefan inverse problem. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 20-31. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a2/

[1] N. L. Goldman, Obratnye zadachi Stefana. Teoriya i metody resheniya, Izd-vo MGU, M., 1999, 294 pp.

[2] A. Fridman, Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968, 427 pp.

[3] O. M. Alifanov, E. A. Artyukhin, L. Ya. Savelev, Ekstremalnye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Nauka, M., 1988, 285 pp.

[4] M. M. Lavrentev, L. Ya. Savelev, Teoriya operatorov i nekorrektnye zadachi, Izd-vo In-ta matematiki, Novosibirsk, 1999, 702 pp.

[5] G. N. Vatson, Teoriya besselevykh funktsii. Chast I, Inostr. lit., M., 1949, 748 pp.

[6] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp.

[7] V. A. Zorich, Matematicheskii analiz. Chast II, Nauka, M., 1984, 640 pp.

[8] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969, 529 pp.

[9] V. P. Tanana, “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. vych. matematiki, 7:2 (2004), 117–132

[10] V. P. Tanana, Metody resheniya operatornykh uravnenii, Nauka, M., 1981, 160 pp.