About the higman numbers of groups $L_2(2^n)$
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 104-109

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study the relations between the units of character fields and the central units of integer group rings. The object of interest in this paper is finding of the exponents of unit groups of factor rings of the integer rings by principal ideals generated by natural numbers. In some cases we obtain the exact values of such exponents, and in the remaining cases their upper bounds. This leads to some results on divisibility of the Higman numbers.
Keywords: central units of integer group rings, Higman number, character of finite group.
@article{VCHGU_2010_12_a12,
     author = {V. S. Nasypova},
     title = {About the higman numbers of groups $L_2(2^n)$},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {104--109},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a12/}
}
TY  - JOUR
AU  - V. S. Nasypova
TI  - About the higman numbers of groups $L_2(2^n)$
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 104
EP  - 109
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a12/
LA  - ru
ID  - VCHGU_2010_12_a12
ER  - 
%0 Journal Article
%A V. S. Nasypova
%T About the higman numbers of groups $L_2(2^n)$
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 104-109
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a12/
%G ru
%F VCHGU_2010_12_a12
V. S. Nasypova. About the higman numbers of groups $L_2(2^n)$. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 104-109. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a12/