About the higman numbers of groups $L_2(2^n)$
    
    
  
  
  
      
      
      
        
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 104-109
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this article we study the relations between the units of character fields and
the central units of integer group rings. The object of interest in this paper is finding
of the exponents of unit groups of factor rings of the integer rings by principal ideals
generated by natural numbers. In some cases we obtain the exact values of such
exponents, and in the remaining cases their upper bounds. This leads to some results
on divisibility of the Higman numbers.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
central units of integer group rings, Higman number, character of
finite group.
                    
                  
                
                
                @article{VCHGU_2010_12_a12,
     author = {V. S. Nasypova},
     title = {About the higman numbers of groups $L_2(2^n)$},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {104--109},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a12/}
}
                      
                      
                    TY - JOUR AU - V. S. Nasypova TI - About the higman numbers of groups $L_2(2^n)$ JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2010 SP - 104 EP - 109 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a12/ LA - ru ID - VCHGU_2010_12_a12 ER -
V. S. Nasypova. About the higman numbers of groups $L_2(2^n)$. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 104-109. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a12/
