@article{VCHGU_2010_12_a11,
author = {E. A. Fominykh},
title = {$3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {98--103},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/}
}
TY - JOUR AU - E. A. Fominykh TI - $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$ JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2010 SP - 98 EP - 103 IS - 12 UR - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/ LA - ru ID - VCHGU_2010_12_a11 ER -
%0 Journal Article %A E. A. Fominykh %T $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$ %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2010 %P 98-103 %N 12 %U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/ %G ru %F VCHGU_2010_12_a11
E. A. Fominykh. $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 98-103. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/
[1] P. Skott, Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986, 168 pp.
[2] U. Terston, Trekhmernaya geometriya i topologiya na trekhmernykh mnogoobraziyakh, MTsNMO, M., 2001, 312 pp.
[3] S. Anisov, Toward lower bounds for complexity of $3$-manifolds: a program, 2001, 43 pp., arXiv: math.GT/0103169
[4] E. Fominykh, S. Matveev, V. Tarkaev, Atlas of $3$-manifolds www.matlas.math.csu.ru
[5] B. Martelli, C. Petronio, “Complexity of geometric $3$-manifolds”, Geometriae Dedicata, 108 (2004), 15–69
[6] S. V. Matveev, Tables of $3$-manifolds up to complexity $6$, Max-Planck-Institute for Mathematics. Preprint Series, no. 67, 1998, 50 pp.
[7] S. Matveev, Algorithmic topology and classification of $3$-manifolds (Algorithms and Computation in Mathematics), Springer, Berlin, Heidelberg, 2007, 492 pp.