$3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 98-103
Voir la notice de l'article provenant de la source Math-Net.Ru
We present lower bounds for the number of closed orientable
$3$-manifolds up to complexity $k$ possessing geometries $S^3$ and
$Nil$. The bounds are sharp for all $k\leqslant 12$. This allows
us to find potentially sharp lower bounds for the number of
$3$-manifolds with complexity $13$ possessing geometries $S^3$ and
$Nil$.
Keywords:
$3$-manifold, complexity, geometric manifold.
@article{VCHGU_2010_12_a11,
author = {E. A. Fominykh},
title = {$3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {98--103},
publisher = {mathdoc},
number = {12},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/}
}
TY - JOUR AU - E. A. Fominykh TI - $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$ JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2010 SP - 98 EP - 103 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/ LA - ru ID - VCHGU_2010_12_a11 ER -
%0 Journal Article %A E. A. Fominykh %T $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$ %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2010 %P 98-103 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/ %G ru %F VCHGU_2010_12_a11
E. A. Fominykh. $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 98-103. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/