$3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 98-103

Voir la notice de l'article provenant de la source Math-Net.Ru

We present lower bounds for the number of closed orientable $3$-manifolds up to complexity $k$ possessing geometries $S^3$ and $Nil$. The bounds are sharp for all $k\leqslant 12$. This allows us to find potentially sharp lower bounds for the number of $3$-manifolds with complexity $13$ possessing geometries $S^3$ and $Nil$.
Keywords: $3$-manifold, complexity, geometric manifold.
@article{VCHGU_2010_12_a11,
     author = {E. A. Fominykh},
     title = {$3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {98--103},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/}
}
TY  - JOUR
AU  - E. A. Fominykh
TI  - $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 98
EP  - 103
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/
LA  - ru
ID  - VCHGU_2010_12_a11
ER  - 
%0 Journal Article
%A E. A. Fominykh
%T $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 98-103
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/
%G ru
%F VCHGU_2010_12_a11
E. A. Fominykh. $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 98-103. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/