$3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 98-103
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present lower bounds for the number of closed orientable $3$-manifolds up to complexity $k$ possessing geometries $S^3$ and $Nil$. The bounds are sharp for all $k\leqslant 12$. This allows us to find potentially sharp lower bounds for the number of $3$-manifolds with complexity $13$ possessing geometries $S^3$ and $Nil$.
Keywords: $3$-manifold, complexity, geometric manifold.
@article{VCHGU_2010_12_a11,
     author = {E. A. Fominykh},
     title = {$3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {98--103},
     year = {2010},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/}
}
TY  - JOUR
AU  - E. A. Fominykh
TI  - $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2010
SP  - 98
EP  - 103
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/
LA  - ru
ID  - VCHGU_2010_12_a11
ER  - 
%0 Journal Article
%A E. A. Fominykh
%T $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2010
%P 98-103
%N 12
%U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/
%G ru
%F VCHGU_2010_12_a11
E. A. Fominykh. $3$-manifolds of small complexity possessing geometries $S^3$ and $Nil$. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 98-103. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a11/

[1] P. Skott, Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986, 168 pp.

[2] U. Terston, Trekhmernaya geometriya i topologiya na trekhmernykh mnogoobraziyakh, MTsNMO, M., 2001, 312 pp.

[3] S. Anisov, Toward lower bounds for complexity of $3$-manifolds: a program, 2001, 43 pp., arXiv: math.GT/0103169

[4] E. Fominykh, S. Matveev, V. Tarkaev, Atlas of $3$-manifolds www.matlas.math.csu.ru

[5] B. Martelli, C. Petronio, “Complexity of geometric $3$-manifolds”, Geometriae Dedicata, 108 (2004), 15–69

[6] S. V. Matveev, Tables of $3$-manifolds up to complexity $6$, Max-Planck-Institute for Mathematics. Preprint Series, no. 67, 1998, 50 pp.

[7] S. Matveev, Algorithmic topology and classification of $3$-manifolds (Algorithms and Computation in Mathematics), Springer, Berlin, Heidelberg, 2007, 492 pp.