Mots-clés : groupoid, quandle, cocycle invariant.
@article{VCHGU_2010_12_a10,
author = {D. V. Gorkovets},
title = {Cocycle invariants for links in the projective space},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {88--97},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a10/}
}
TY - JOUR AU - D. V. Gorkovets TI - Cocycle invariants for links in the projective space JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2010 SP - 88 EP - 97 IS - 12 UR - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a10/ LA - ru ID - VCHGU_2010_12_a10 ER -
D. V. Gorkovets. Cocycle invariants for links in the projective space. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 88-97. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a10/
[1] N. Andruskiewitsch, M. Graña, “From racks to pointed Hopf algebras”, Adv. in Math., 178:2 (2003), 177–243
[2] Scott Carter, A Survey of Quandle Ideas, 2010, arXiv: 1002.4429 [math.GT]
[3] Scott Carter, Mohamed Elhamdadi, Marias Graña, Masahico Saito, “Generalizations of Quandle Cocycles Invariants and Alexander Modules from Quandle Modules”, Osaka J. Math., 42 (2005), 499–541
[4] Scott Carter, Mohamed Elhamdadi, Masahico Saito, “Twisted quandle homology theory and cocycle knot invariants”, Algebraic Geometric Topology, 2 (2002), 95–135
[5] Scott Carter, Seiishi Kamada, Daniel Jelsovsky, Laurel Langford, Masahico Saito, “Quandle Cohomology and State-sum Invariants of Knotted Curves and Surfaces”, Trans. Amer. Math. Soc., 355 (2003), 3947–3989
[6] D. Joyce, “A classifying invariant of knots: the knot quandle”, Journal of Pure and Applied Algebra, 23 (1982), 37–65
[7] Yu. V. Drobotukhina, Analog polinoma Dzhonsa dlya zatseplenii v ${\mathbb R}P^3$ i obobschenie teoremy Kaufmana-Murasugi, Algebra i analiz:2 (1991), 613–630
[8] Ju. V. Drobotukhina, “Classification of links in ${\mathbb R}P^3$ with at most six crossings”, Advances in Soviet Mathematics, 18:1 (1994), 87–121
[9] S. V. Matveev, “Distributivnye gruppoidy v teorii uzlov”, Matematicheskii sbornik, 119(161):1 (1981), 78–88