Fredholm property of a boundary problem for differential equation of special form
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 5-11
Cet article a éte moissonné depuis la source Math-Net.Ru
This article concerns the second-order differential equation with the zero coefficient of the first derivative and with the coefficient of a special type of the unknown function. Certain conditions are indicated on which the solution of the given equation exists and is unique across the interval of the real line, when the right-hand member is whatever and continuous, and the values of the unknown function are arbitrary and given.
Keywords:
second-order differential equation, boundary value problem, Fredholm alternative.
@article{VCHGU_2010_12_a0,
author = {D. O. Degtyarev and S. V. Repjevskij},
title = {Fredholm property of a boundary problem for differential equation of special form},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {5--11},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a0/}
}
TY - JOUR AU - D. O. Degtyarev AU - S. V. Repjevskij TI - Fredholm property of a boundary problem for differential equation of special form JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2010 SP - 5 EP - 11 IS - 12 UR - http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a0/ LA - ru ID - VCHGU_2010_12_a0 ER -
%0 Journal Article %A D. O. Degtyarev %A S. V. Repjevskij %T Fredholm property of a boundary problem for differential equation of special form %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2010 %P 5-11 %N 12 %U http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a0/ %G ru %F VCHGU_2010_12_a0
D. O. Degtyarev; S. V. Repjevskij. Fredholm property of a boundary problem for differential equation of special form. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 12 (2010), pp. 5-11. http://geodesic.mathdoc.fr/item/VCHGU_2010_12_a0/
[1] A. M. Ilin, A. R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009
[2] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v voprosakh matematicheskoi fiziki, Nauka, M., 1988