Nonstationarity linearizes model of dynamics of nonconpressible viscoelastic fluid
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 77-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first initial-boundary value problem for the Oskolkov system of equations modeling in the linear approximation the dynamics of the Kelvin — Voight noncompressible viscoelastic fluid of the zero order is considered. This problem is investigated in the frames of the theory of linear nonhomogenious Sobolev type equations. The existence theorem of the unique solution is proved and the description of the extended phase space of the equation is obtained.
@article{VCHGU_2009_11_a8,
     author = {T. G. Sukacheva},
     title = {Nonstationarity linearizes model of dynamics of nonconpressible viscoelastic fluid},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {77--83},
     year = {2009},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a8/}
}
TY  - JOUR
AU  - T. G. Sukacheva
TI  - Nonstationarity linearizes model of dynamics of nonconpressible viscoelastic fluid
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2009
SP  - 77
EP  - 83
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a8/
LA  - ru
ID  - VCHGU_2009_11_a8
ER  - 
%0 Journal Article
%A T. G. Sukacheva
%T Nonstationarity linearizes model of dynamics of nonconpressible viscoelastic fluid
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2009
%P 77-83
%N 11
%U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a8/
%G ru
%F VCHGU_2009_11_a8
T. G. Sukacheva. Nonstationarity linearizes model of dynamics of nonconpressible viscoelastic fluid. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 77-83. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a8/

[1] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina—Foigta i zhidkostei Oldroita”, Tr. mat. in-ta AN SSSR, no. 179, 1988, 126–164

[2] A. P. Oskolkov, “Nelokalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S. L. Soboleva”, Zap. nauch. seminara LOMI, 198, 1991, 31–48 | Zbl

[3] A. P. Oskolkov, “Ob asimptoticheskom povedenii pri $t \to \infty$ reshenii nachalno-kraevykh zadach dlya uravnenii dvizheniya vyazkouprugikh zhidkostei”, Zap. nauch. seminara LOMI, 171, 1989, 174–181 | Zbl

[4] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4 (1994), 47–74 | MR | Zbl

[5] G. A. Sviridyuk, T. G. Sukacheva, “Nekotorye matematicheskie zadachi dinamiki vyazkouprugikh neszhimaemykh sred”, Vestn. MaGU. Matematika, no. 8, 5–33 | MR

[6] T. G. Sukacheva, Issledovanie matematicheskikh modelei neszhimaemykh vyazkouprugikh zhidkostei, Dis. ...d-ra fiz.-mat. nauk, Novgorod. gos. un-t, Velikii Novgorod, 2004

[7] L. D. Landau, E. M. Lifshits, Gidrodinamika, Nauka, M., 1986 | MR

[8] G. A. Sviridyuk, “Ob odnoi modeli slaboszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matematika, 1994, no. 1, 62—70 | Zbl

[9] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR