Local solvability of a class of linear equations with memory
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 70-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Local unique solvability of the Cauchy problem for linear evolution equation in Banach space with sectorial operator and integral memory operator having operatorvalued kernel is proved. The result of the work is illustrated on the example of initial boundary value problem for the heat equation with memory.
@article{VCHGU_2009_11_a7,
     author = {O. A. Stakheeva},
     title = {Local solvability of a class of linear equations with memory},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {70--76},
     year = {2009},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a7/}
}
TY  - JOUR
AU  - O. A. Stakheeva
TI  - Local solvability of a class of linear equations with memory
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2009
SP  - 70
EP  - 76
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a7/
LA  - ru
ID  - VCHGU_2009_11_a7
ER  - 
%0 Journal Article
%A O. A. Stakheeva
%T Local solvability of a class of linear equations with memory
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2009
%P 70-76
%N 11
%U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a7/
%G ru
%F VCHGU_2009_11_a7
O. A. Stakheeva. Local solvability of a class of linear equations with memory. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 70-76. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a7/

[1] M. Grasselli, V. Pata, “Uniform attractors of nonautonomous dynamical systems with memory”, Progress in nonlinear, 50 (2002), 155—178, Birkhäuser-Verlag differential equations and their applications, Basel | MR

[2] B. D. Coleman, M. E. Gurtin. Z. Angew, “Equipresence and costitutive equations for rigid heat conductors”, Math. Phys., 18 (1967), 199—208 | MR

[3] M. E. Gurtin, A. C. Pipkin, “A general theory of heat conduction with finite wave speeds”, Arch. Rational Mech. Anal., 31 (1968), 113—126 | DOI | MR | Zbl

[4] M. Fabrizio, A. Morro, “Mathematical problems in linear viscoelasticity”, SIAM Studies Appl. Math., 12 (1992), SIAM, Philadelphia | MR | Zbl

[5] M. Renardy, W. J. Hrusa, J. A. Nohel, Mathematical problems in linear viscoelasticity, Longman Scientific and Technical; Harlow John Wiley and Sons, Inc., N. Y, 1987 | MR

[6] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR