Research of the linearized Boussinesq system of equations by methods of theory of degenerate operator semigroups
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 62-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Initial boundary value problem for the linearized Boussinesq system of equations is reduced to the the Cauchy problem for Sobolev type equation with strongly $(L,0)$-sectorial operator from the right and from the left.
@article{VCHGU_2009_11_a6,
     author = {M. V. Plekhanova and A. F. Islamova},
     title = {Research of the linearized {Boussinesq} system of equations by methods of theory of degenerate operator semigroups},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {62--69},
     year = {2009},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a6/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - A. F. Islamova
TI  - Research of the linearized Boussinesq system of equations by methods of theory of degenerate operator semigroups
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2009
SP  - 62
EP  - 69
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a6/
LA  - ru
ID  - VCHGU_2009_11_a6
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A A. F. Islamova
%T Research of the linearized Boussinesq system of equations by methods of theory of degenerate operator semigroups
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2009
%P 62-69
%N 11
%U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a6/
%G ru
%F VCHGU_2009_11_a6
M. V. Plekhanova; A. F. Islamova. Research of the linearized Boussinesq system of equations by methods of theory of degenerate operator semigroups. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 62-69. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a6/

[1] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[2] U. Yusupaliev, A. K. Maslov, S. A. Shuteev, “Teplovydelenie kak mekhanizm samopodderzhaniya zakruchennogo potoka v gaze”, Priklad. fizika, 2000, no. 1, 5–10

[3] G. A. Sviridyuk, V. E. Fedorov, “O edinitsakh analiticheskikh polugrupp operatorov s yadrami”, Sib. mat. zhurn., 39:3 (1998), 604–616 | MR

[4] V. E. Fedorov, “Golomorfnye razreshayuschie polugruppy uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Mat. sb., 195:8 (2004), 131–160 | DOI | Zbl

[5] G. A. Sviridyuk, A. A. Efremov, “Optimalnoe upravlenie lineinymi uravneniyami tipa Soboleva s otnositelno p-sektorialnymi operatorami”, Differents. uravneniya, 31:11 (1995), 1912–1919 | MR | Zbl

[6] V. A. Solonnikov, “Otsenki tenzorov Grina dlya nekotorykh granichnykh zadach”, Dokl. AN SSSR, 130:5 (1960), 988–991 | MR | Zbl

[7] I. I. Vorovich, V. I. Yudovich, “Statsionarnye techeniya vyazkoi neszhimaemoi zhidkosti”, Mat. sb., 53:4 (1961), 393–428

[8] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173—200