Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 54-61
Cet article a éte moissonné depuis la source Math-Net.Ru
The optimality under the order of a method of projection regularization is proved at the solution of a problem of restoration of a temperature field and a thermal stream on border of considered area.
@article{VCHGU_2009_11_a5,
author = {A. S. Kutuzov},
title = {Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {54--61},
year = {2009},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a5/}
}
TY - JOUR AU - A. S. Kutuzov TI - Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2009 SP - 54 EP - 61 IS - 11 UR - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a5/ LA - ru ID - VCHGU_2009_11_a5 ER -
%0 Journal Article %A A. S. Kutuzov %T Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2009 %P 54-61 %N 11 %U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a5/ %G ru %F VCHGU_2009_11_a5
A. S. Kutuzov. Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 54-61. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a5/
[1] A. S. Kutuzov, “Tochnaya po poryadku otsenka priblizhennogo resheniya obratnoi zadachi dlya uravneniya teploprovodnosti na koltse”, Vestn. YuUrGU. Ser. Matematika. Fizika. Khimiya, 9:19 (91) (2007), 30—36
[2] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR
[3] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[4] V. P. Tanana, “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. vychisl. matematiki, 7:2 (2004), 117—132 | MR | Zbl