Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 54-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimality under the order of a method of projection regularization is proved at the solution of a problem of restoration of a temperature field and a thermal stream on border of considered area.
@article{VCHGU_2009_11_a5,
     author = {A. S. Kutuzov},
     title = {Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {54--61},
     year = {2009},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a5/}
}
TY  - JOUR
AU  - A. S. Kutuzov
TI  - Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2009
SP  - 54
EP  - 61
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a5/
LA  - ru
ID  - VCHGU_2009_11_a5
ER  - 
%0 Journal Article
%A A. S. Kutuzov
%T Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2009
%P 54-61
%N 11
%U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a5/
%G ru
%F VCHGU_2009_11_a5
A. S. Kutuzov. Optimum under the order an estimation of the solution of an inverse problem of thermal diagnostics for the equation with variable factor. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 54-61. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a5/

[1] A. S. Kutuzov, “Tochnaya po poryadku otsenka priblizhennogo resheniya obratnoi zadachi dlya uravneniya teploprovodnosti na koltse”, Vestn. YuUrGU. Ser. Matematika. Fizika. Khimiya, 9:19 (91) (2007), 30—36

[2] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR

[3] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[4] V. P. Tanana, “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. vychisl. matematiki, 7:2 (2004), 117—132 | MR | Zbl