On genus two three-manifolds
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 105-121
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is devoted to a computer enumeration of genus two Heegaard diagrams and recognition of the corresponding 3-manifolds. Results of computer experiments are presented and a few conjectures are formulated.
@article{VCHGU_2009_11_a11,
author = {F. G. Korablev and S. V. Matveev and V. V. Tarkaev},
title = {On genus two three-manifolds},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {105--121},
year = {2009},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a11/}
}
TY - JOUR AU - F. G. Korablev AU - S. V. Matveev AU - V. V. Tarkaev TI - On genus two three-manifolds JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2009 SP - 105 EP - 121 IS - 11 UR - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a11/ LA - ru ID - VCHGU_2009_11_a11 ER -
%0 Journal Article %A F. G. Korablev %A S. V. Matveev %A V. V. Tarkaev %T On genus two three-manifolds %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2009 %P 105-121 %N 11 %U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a11/ %G ru %F VCHGU_2009_11_a11
F. G. Korablev; S. V. Matveev; V. V. Tarkaev. On genus two three-manifolds. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 105-121. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a11/
[1] T. Homma, M. Ochiai, M. Takahashi, “An algorithm for recognizing $S^3$ in $3$-manifolds with Heegaard splittings of genus two”, Osaka J. Math., 17 (1980), 625–648 | MR | Zbl
[2] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR
[3] M. Boileau, H. Zieschang, “Heegaard genus of closed orientable Seifert $3$-manifolds”, Inventiones Mathematicae, 76 (1984), 455—468 | DOI | MR | Zbl
[4] Y. Moriah, J. Schultens, “Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal”, Topology, 37:5 (1998), 1089–1112 | DOI | MR | Zbl
[5] J. Schultens, “Heegaard splittings of graph manifolds”, Geometry and Topology, 8 (2005), 831—876 | DOI | MR