On genus two three-manifolds
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 105-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to a computer enumeration of genus two Heegaard diagrams and recognition of the corresponding 3-manifolds. Results of computer experiments are presented and a few conjectures are formulated.
@article{VCHGU_2009_11_a11,
     author = {F. G. Korablev and S. V. Matveev and V. V. Tarkaev},
     title = {On genus two three-manifolds},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {105--121},
     year = {2009},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a11/}
}
TY  - JOUR
AU  - F. G. Korablev
AU  - S. V. Matveev
AU  - V. V. Tarkaev
TI  - On genus two three-manifolds
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2009
SP  - 105
EP  - 121
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a11/
LA  - ru
ID  - VCHGU_2009_11_a11
ER  - 
%0 Journal Article
%A F. G. Korablev
%A S. V. Matveev
%A V. V. Tarkaev
%T On genus two three-manifolds
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2009
%P 105-121
%N 11
%U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a11/
%G ru
%F VCHGU_2009_11_a11
F. G. Korablev; S. V. Matveev; V. V. Tarkaev. On genus two three-manifolds. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 105-121. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a11/

[1] T. Homma, M. Ochiai, M. Takahashi, “An algorithm for recognizing $S^3$ in $3$-manifolds with Heegaard splittings of genus two”, Osaka J. Math., 17 (1980), 625–648 | MR | Zbl

[2] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR

[3] M. Boileau, H. Zieschang, “Heegaard genus of closed orientable Seifert $3$-manifolds”, Inventiones Mathematicae, 76 (1984), 455—468 | DOI | MR | Zbl

[4] Y. Moriah, J. Schultens, “Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal”, Topology, 37:5 (1998), 1089–1112 | DOI | MR | Zbl

[5] J. Schultens, “Heegaard splittings of graph manifolds”, Geometry and Topology, 8 (2005), 831—876 | DOI | MR